L11n140

From Knot Atlas
Jump to: navigation, search

L11n139.gif

L11n139

L11n141.gif

L11n141

Contents

L11n140.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n140 at Knotilus!


Link Presentations

[edit Notes on L11n140's Link Presentations]

Planar diagram presentation X8192 X18,11,19,12 X3,10,4,11 X17,3,18,2 X12,5,13,6 X6718 X9,16,10,17 X15,20,16,21 X13,22,14,7 X21,14,22,15 X4,20,5,19
Gauss code {1, 4, -3, -11, 5, -6}, {6, -1, -7, 3, 2, -5, -9, 10, -8, 7, -4, -2, 11, 8, -10, 9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n140 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u^2 v^2-u^2 v-3 u v^2+5 u v-3 u-v+1}{u v} (db)
Jones polynomial \frac{5}{q^{9/2}}-\frac{5}{q^{7/2}}+\frac{3}{q^{5/2}}-\frac{2}{q^{3/2}}+\frac{2}{q^{17/2}}-\frac{3}{q^{15/2}}+\frac{4}{q^{13/2}}-\frac{6}{q^{11/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial -a^9 z^{-1} -z^3 a^7+2 a^7 z^{-1} +z^5 a^5+3 z^3 a^5+3 z a^5-2 z^3 a^3-4 z a^3-a^3 z^{-1} (db)
Kauffman polynomial 3 a^{10} z^4-7 a^{10} z^2+2 a^{10}+a^9 z^7-a^9 z^5-2 a^9 z^3+2 a^9 z-a^9 z^{-1} +a^8 z^8-3 a^8 z^6+9 a^8 z^4-13 a^8 z^2+5 a^8+3 a^7 z^7-7 a^7 z^5+6 a^7 z^3+2 a^7 z-2 a^7 z^{-1} +a^6 z^8-2 a^6 z^6+6 a^6 z^4-6 a^6 z^2+3 a^6+2 a^5 z^7-6 a^5 z^5+11 a^5 z^3-5 a^5 z+a^4 z^6-a^4+3 a^3 z^3-5 a^3 z+a^3 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-10χ
-2       22
-4      21-1
-6     31 2
-8    33  0
-10   32   1
-12  13    2
-14 23     -1
-16 1      1
-182       -2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-7 {\mathbb Z}^{2}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n139.gif

L11n139

L11n141.gif

L11n141