# L11n124

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11n124 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $-\frac{(u-1) (v-1) \left(2 v^2-3 v+2\right)}{\sqrt{u} v^{3/2}}$ (db) Jones polynomial $3 q^{9/2}-6 q^{7/2}+\frac{1}{q^{7/2}}+8 q^{5/2}-\frac{4}{q^{5/2}}-9 q^{3/2}+\frac{6}{q^{3/2}}-q^{11/2}+9 \sqrt{q}-\frac{9}{\sqrt{q}}$ (db) Signature -1 (db) HOMFLY-PT polynomial $-2 z^5 a^{-1} +3 a z^3-7 z^3 a^{-1} +3 z^3 a^{-3} -a^3 z+5 a z-9 z a^{-1} +6 z a^{-3} -z a^{-5} +2 a z^{-1} -4 a^{-1} z^{-1} +3 a^{-3} z^{-1} - a^{-5} z^{-1}$ (db) Kauffman polynomial $-2 z^9 a^{-1} -2 z^9 a^{-3} -10 z^8 a^{-2} -3 z^8 a^{-4} -7 z^8-7 a z^7-5 z^7 a^{-1} +z^7 a^{-3} -z^7 a^{-5} -2 a^2 z^6+39 z^6 a^{-2} +12 z^6 a^{-4} +25 z^6+25 a z^5+42 z^5 a^{-1} +21 z^5 a^{-3} +4 z^5 a^{-5} +a^2 z^4-42 z^4 a^{-2} -14 z^4 a^{-4} -27 z^4-4 a^3 z^3-32 a z^3-56 z^3 a^{-1} -34 z^3 a^{-3} -6 z^3 a^{-5} -a^4 z^2+17 z^2 a^{-2} +6 z^2 a^{-4} +12 z^2+3 a^3 z+15 a z+26 z a^{-1} +18 z a^{-3} +4 z a^{-5} -a^2-3 a^{-2} - a^{-4} -2-2 a z^{-1} -4 a^{-1} z^{-1} -3 a^{-3} z^{-1} - a^{-5} z^{-1}$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-3-2-10123456χ
12         11
10        2 -2
8       41 3
6      42  -2
4     54   1
2   154    0
0   55     0
-2  36      3
-4 13       -2
-6 3        3
-81         -1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=-2$ $i=0$ $i=2$ $r=-3$ ${\mathbb Z}$ $r=-2$ ${\mathbb Z}^{3}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-1$ ${\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{3}$ $r=0$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{5}$ ${\mathbb Z}$ $r=1$ ${\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5}$ ${\mathbb Z}^{5}$ $r=2$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5}$ ${\mathbb Z}^{5}$ $r=3$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=4$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=5$ ${\mathbb Z}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$ $r=6$ ${\mathbb Z}_2$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.