# L11a548

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11a548 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $\frac{-2 t(2) t(1)+2 t(2) t(3) t(1)-2 t(3) t(1)+t(2) t(4) t(1)-t(2) t(3) t(4) t(1)+2 t(3) t(4) t(1)-2 t(4) t(1)+2 t(2) t(5) t(1)-t(2) t(3) t(5) t(1)+t(3) t(5) t(1)-2 t(2) t(4) t(5) t(1)+t(2) t(3) t(4) t(5) t(1)-2 t(3) t(4) t(5) t(1)+3 t(4) t(5) t(1)-2 t(5) t(1)+2 t(1)+2 t(2)-3 t(2) t(3)+2 t(3)-t(2) t(4)+2 t(2) t(3) t(4)-2 t(3) t(4)+t(4)-2 t(2) t(5)+2 t(2) t(3) t(5)-t(3) t(5)+2 t(2) t(4) t(5)-2 t(2) t(3) t(4) t(5)+2 t(3) t(4) t(5)-2 t(4) t(5)+t(5)-1}{\sqrt{t(1)} \sqrt{t(2)} \sqrt{t(3)} \sqrt{t(4)} \sqrt{t(5)}}$ (db) Jones polynomial $q^{-9} - q^{-8} +6 q^{-7} -6 q^{-6} +16 q^{-5} -15 q^{-4} +21 q^{-3} -q^2-15 q^{-2} +5 q+15 q^{-1} -10$ (db) Signature -2 (db) HOMFLY-PT polynomial $a^{10} z^{-2} +a^{10} z^{-4} -7 a^8 z^{-2} -4 a^8 z^{-4} -4 a^8+6 z^2 a^6+15 a^6 z^{-2} +6 a^6 z^{-4} +14 a^6-4 z^4 a^4-10 z^2 a^4-13 a^4 z^{-2} -4 a^4 z^{-4} -16 a^4+z^6 a^2+2 z^4 a^2+4 z^2 a^2+4 a^2 z^{-2} +a^2 z^{-4} +6 a^2-z^4$ (db) Kauffman polynomial $z^6 a^{10}-5 z^4 a^{10}+10 z^2 a^{10}+5 a^{10} z^{-2} -a^{10} z^{-4} -10 a^{10}+z^7 a^9-10 z^3 a^9+20 z a^9-15 a^9 z^{-1} +4 a^9 z^{-3} +z^8 a^8+4 z^6 a^8-20 z^4 a^8+30 z^2 a^8+14 a^8 z^{-2} -4 a^8 z^{-4} -25 a^8+z^9 a^7+3 z^7 a^7-30 z^3 a^7+55 z a^7-41 a^7 z^{-1} +12 a^7 z^{-3} +z^{10} a^6+z^8 a^6+9 z^6 a^6-31 z^4 a^6+40 z^2 a^6+18 a^6 z^{-2} -6 a^6 z^{-4} -31 a^6+6 z^9 a^5-8 z^7 a^5+11 z^5 a^5-30 z^3 a^5+55 z a^5-41 a^5 z^{-1} +12 a^5 z^{-3} +z^{10} a^4+10 z^8 a^4-14 z^6 a^4-11 z^4 a^4+30 z^2 a^4+14 a^4 z^{-2} -4 a^4 z^{-4} -25 a^4+5 z^9 a^3-5 z^5 a^3-10 z^3 a^3+20 z a^3-15 a^3 z^{-1} +4 a^3 z^{-3} +10 z^8 a^2-15 z^6 a^2+10 z^2 a^2+5 a^2 z^{-2} -a^2 z^{-4} -10 a^2+10 z^7 a-15 z^5 a+5 z^6-5 z^4+z^5 a^{-1}$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-8-7-6-5-4-3-2-10123χ
5           1-1
3          4 4
1         61 -5
-1        94  5
-3       1111   0
-5      104    6
-7     511     6
-9    1110      1
-11   515       10
-13  11        0
-15  5         5
-1711          0
-191           1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=-3$ $i=-1$ $r=-8$ ${\mathbb Z}$ ${\mathbb Z}$ $r=-7$ ${\mathbb Z}$ $r=-6$ ${\mathbb Z}^{5}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-5$ ${\mathbb Z}\oplus{\mathbb Z}_2^{5}$ ${\mathbb Z}^{5}$ $r=-4$ ${\mathbb Z}^{15}\oplus{\mathbb Z}_2$ ${\mathbb Z}^{11}$ $r=-3$ ${\mathbb Z}^{10}\oplus{\mathbb Z}_2^{5}$ ${\mathbb Z}^{5}$ $r=-2$ ${\mathbb Z}^{11}\oplus{\mathbb Z}_2^{10}$ ${\mathbb Z}^{10}$ $r=-1$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{11}$ ${\mathbb Z}^{11}$ $r=0$ ${\mathbb Z}^{11}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{9}$ $r=1$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{6}$ $r=2$ ${\mathbb Z}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=3$ ${\mathbb Z}_2$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.