# L11a393

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11a393 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $\frac{u v w^5-u v w^4+u v w^3-u v w^2+u v w-u v-u w^5+2 u w^4-2 u w^3+2 u w^2-2 u w+2 u-2 v w^5+2 v w^4-2 v w^3+2 v w^2-2 v w+v+w^5-w^4+w^3-w^2+w-1}{\sqrt{u} \sqrt{v} w^{5/2}}$ (db) Jones polynomial $-q^9+3 q^8-6 q^7+7 q^6-10 q^5+11 q^4-9 q^3+9 q^2+ q^{-2} -5 q- q^{-1} +5$ (db) Signature 4 (db) HOMFLY-PT polynomial $z^8 a^{-4} -2 z^6 a^{-2} +6 z^6 a^{-4} -z^6 a^{-6} -11 z^4 a^{-2} +14 z^4 a^{-4} -4 z^4 a^{-6} +z^4-21 z^2 a^{-2} +20 z^2 a^{-4} -5 z^2 a^{-6} +5 z^2-20 a^{-2} +18 a^{-4} -5 a^{-6} +7-8 a^{-2} z^{-2} +7 a^{-4} z^{-2} -2 a^{-6} z^{-2} +3 z^{-2}$ (db) Kauffman polynomial $z^{10} a^{-2} +z^{10} a^{-4} +z^9 a^{-1} +5 z^9 a^{-3} +4 z^9 a^{-5} -z^8 a^{-2} +5 z^8 a^{-4} +7 z^8 a^{-6} +z^8-3 z^7 a^{-1} -18 z^7 a^{-3} -8 z^7 a^{-5} +7 z^7 a^{-7} -15 z^6 a^{-2} -34 z^6 a^{-4} -19 z^6 a^{-6} +7 z^6 a^{-8} -7 z^6-5 z^5 a^{-1} +2 z^5 a^{-3} -9 z^5 a^{-5} -10 z^5 a^{-7} +6 z^5 a^{-9} +42 z^4 a^{-2} +51 z^4 a^{-4} +16 z^4 a^{-6} -8 z^4 a^{-8} +3 z^4 a^{-10} +18 z^4+23 z^3 a^{-1} +44 z^3 a^{-3} +25 z^3 a^{-5} -3 z^3 a^{-7} -6 z^3 a^{-9} +z^3 a^{-11} -47 z^2 a^{-2} -37 z^2 a^{-4} -12 z^2 a^{-6} -22 z^2-24 z a^{-1} -45 z a^{-3} -21 z a^{-5} +3 z a^{-7} +3 z a^{-9} +28 a^{-2} +22 a^{-4} +7 a^{-6} + a^{-8} +13+8 a^{-1} z^{-1} +15 a^{-3} z^{-1} +7 a^{-5} z^{-1} - a^{-7} z^{-1} - a^{-9} z^{-1} -8 a^{-2} z^{-2} -7 a^{-4} z^{-2} -2 a^{-6} z^{-2} -3 z^{-2}$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-4-3-2-101234567χ
19           1-1
17          2 2
15         41 -3
13        32  1
11       74   -3
9      43    1
7     57     2
5    44      0
3   48       4
1  11        0
-1  4         4
-311          0
-51           1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=3$ $i=5$ $r=-4$ ${\mathbb Z}$ ${\mathbb Z}$ $r=-3$ ${\mathbb Z}$ $r=-2$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-1$ ${\mathbb Z}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=0$ ${\mathbb Z}^{8}\oplus{\mathbb Z}_2$ ${\mathbb Z}^{4}$ $r=1$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5}$ ${\mathbb Z}^{5}$ $r=2$ ${\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=3$ ${\mathbb Z}^{3}\oplus{\mathbb Z}_2^{7}$ ${\mathbb Z}^{7}$ $r=4$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{3}$ $r=5$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=6$ ${\mathbb Z}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$ $r=7$ ${\mathbb Z}_2$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.