# L11a376

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11a376 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $-\frac{(t(2) t(1)-t(1)+1) (t(1) t(2)-t(2)+1) \left(t(2) t(1)^2+t(2)^2 t(1)-t(2) t(1)+t(1)+t(2)\right)}{t(1)^2 t(2)^2}$ (db) Jones polynomial $\frac{14}{q^{9/2}}-\frac{15}{q^{7/2}}+\frac{12}{q^{5/2}}+q^{3/2}-\frac{10}{q^{3/2}}-\frac{1}{q^{19/2}}+\frac{2}{q^{17/2}}-\frac{5}{q^{15/2}}+\frac{9}{q^{13/2}}-\frac{12}{q^{11/2}}-3 \sqrt{q}+\frac{6}{\sqrt{q}}$ (db) Signature -3 (db) HOMFLY-PT polynomial $z^5 a^7+4 z^3 a^7+5 z a^7+a^7 z^{-1} -z^7 a^5-5 z^5 a^5-10 z^3 a^5-8 z a^5-a^5 z^{-1} -z^7 a^3-4 z^5 a^3-5 z^3 a^3-2 z a^3+z^5 a+3 z^3 a+2 z a$ (db) Kauffman polynomial $-z^5 a^{11}+3 z^3 a^{11}-2 z a^{11}-2 z^6 a^{10}+4 z^4 a^{10}-z^2 a^{10}-3 z^7 a^9+5 z^5 a^9-2 z^3 a^9+z a^9-4 z^8 a^8+10 z^6 a^8-15 z^4 a^8+9 z^2 a^8-3 z^9 a^7+5 z^7 a^7-6 z^5 a^7+3 z^3 a^7-4 z a^7+a^7 z^{-1} -z^{10} a^6-5 z^8 a^6+19 z^6 a^6-29 z^4 a^6+14 z^2 a^6-a^6-6 z^9 a^5+15 z^7 a^5-18 z^5 a^5+13 z^3 a^5-8 z a^5+a^5 z^{-1} -z^{10} a^4-5 z^8 a^4+18 z^6 a^4-18 z^4 a^4+7 z^2 a^4-3 z^9 a^3+4 z^7 a^3+3 z^5 a^3-2 z^3 a^3+z a^3-4 z^8 a^2+10 z^6 a^2-5 z^4 a^2+z^2 a^2-3 z^7 a+9 z^5 a-7 z^3 a+2 z a-z^6+3 z^4-2 z^2$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-8-7-6-5-4-3-2-10123χ
4           1-1
2          2 2
0         41 -3
-2        62  4
-4       75   -2
-6      85    3
-8     67     1
-10    68      -2
-12   36       3
-14  26        -4
-16 14         3
-18 1          -1
-201           1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=-4$ $i=-2$ $r=-8$ ${\mathbb Z}$ $r=-7$ ${\mathbb Z}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-6$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2$ ${\mathbb Z}^{2}$ $r=-5$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{3}$ $r=-4$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{6}$ $r=-3$ ${\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{6}$ $r=-2$ ${\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8}$ ${\mathbb Z}^{8}$ $r=-1$ ${\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7}$ ${\mathbb Z}^{7}$ $r=0$ ${\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5}$ ${\mathbb Z}^{6}$ $r=1$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=2$ ${\mathbb Z}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$ $r=3$ ${\mathbb Z}_2$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.