# L11a366

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11a366 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $-\frac{u^4 v^3-u^4 v^2+u^3 v^4-3 u^3 v^3+4 u^3 v^2-2 u^3 v-u^2 v^4+4 u^2 v^3-5 u^2 v^2+4 u^2 v-u^2-2 u v^3+4 u v^2-3 u v+u-v^2+v}{u^2 v^2}$ (db) Jones polynomial $-3 q^{9/2}+\frac{2}{q^{9/2}}+6 q^{7/2}-\frac{4}{q^{7/2}}-9 q^{5/2}+\frac{7}{q^{5/2}}+11 q^{3/2}-\frac{10}{q^{3/2}}+q^{11/2}-\frac{1}{q^{11/2}}-13 \sqrt{q}+\frac{11}{\sqrt{q}}$ (db) Signature 1 (db) HOMFLY-PT polynomial $a^3 z^5+z^5 a^{-3} +4 a^3 z^3+3 z^3 a^{-3} +4 a^3 z+2 z a^{-3} +a^3 z^{-1} -a z^7-z^7 a^{-1} -5 a z^5-4 z^5 a^{-1} -9 a z^3-4 z^3 a^{-1} -7 a z-a z^{-1}$ (db) Kauffman polynomial $z^4 a^{-6} -z^2 a^{-6} +a^5 z^7-5 a^5 z^5+3 z^5 a^{-5} +7 a^5 z^3-3 z^3 a^{-5} -2 a^5 z+2 a^4 z^8-9 a^4 z^6+5 z^6 a^{-4} +12 a^4 z^4-6 z^4 a^{-4} -5 a^4 z^2+2 z^2 a^{-4} +2 a^3 z^9-7 a^3 z^7+6 z^7 a^{-3} +7 a^3 z^5-10 z^5 a^{-3} -5 a^3 z^3+9 z^3 a^{-3} +4 a^3 z-3 z a^{-3} -a^3 z^{-1} +a^2 z^{10}+5 z^8 a^{-2} -8 a^2 z^6-8 z^6 a^{-2} +10 a^2 z^4+6 z^4 a^{-2} -6 a^2 z^2-z^2 a^{-2} +a^2+5 a z^9+3 z^9 a^{-1} -17 a z^7-3 z^7 a^{-1} +24 a z^5-z^5 a^{-1} -23 a z^3+z^3 a^{-1} +10 a z+z a^{-1} -a z^{-1} +z^{10}+3 z^8-12 z^6+11 z^4-5 z^2$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-6-5-4-3-2-1012345χ
12           1-1
10          2 2
8         41 -3
6        52  3
4       64   -2
2      75    2
0     57     2
-2    56      -1
-4   36       3
-6  14        -3
-8 13         2
-10 1          -1
-121           1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=0$ $i=2$ $r=-6$ ${\mathbb Z}$ $r=-5$ ${\mathbb Z}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-4$ ${\mathbb Z}^{3}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-3$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{3}$ $r=-2$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{5}$ $r=-1$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5}$ ${\mathbb Z}^{5}$ $r=0$ ${\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{7}$ $r=1$ ${\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{6}$ $r=2$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5}$ ${\mathbb Z}^{5}$ $r=3$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=4$ ${\mathbb Z}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$ $r=5$ ${\mathbb Z}_2$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.