From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a313 at Knotilus!

Link Presentations

[edit Notes on L11a313's Link Presentations]

Planar diagram presentation X10,1,11,2 X2,11,3,12 X12,3,13,4 X18,6,19,5 X14,8,15,7 X20,13,21,14 X8,21,1,22 X16,10,17,9 X22,16,9,15 X6,18,7,17 X4,20,5,19
Gauss code {1, -2, 3, -11, 4, -10, 5, -7}, {8, -1, 2, -3, 6, -5, 9, -8, 10, -4, 11, -6, 7, -9}
A Braid Representative
A Morse Link Presentation L11a313 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) (t(1)+t(2)) (t(1) t(2)+1) \left(t(2)^2-t(2)+1\right)}{t(1)^{3/2} t(2)^{5/2}} (db)
Jones polynomial -q^{11/2}+3 q^{9/2}-6 q^{7/2}+10 q^{5/2}-13 q^{3/2}+14 \sqrt{q}-\frac{16}{\sqrt{q}}+\frac{13}{q^{3/2}}-\frac{10}{q^{5/2}}+\frac{6}{q^{7/2}}-\frac{3}{q^{9/2}}+\frac{1}{q^{11/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial -a^3 z^5-z^5 a^{-3} -3 a^3 z^3-3 z^3 a^{-3} -2 a^3 z-2 z a^{-3} +a z^7+z^7 a^{-1} +4 a z^5+4 z^5 a^{-1} +5 a z^3+5 z^3 a^{-1} +2 a z+2 z a^{-1} +a z^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial -2 z^{10} a^{-2} -2 z^{10}-5 a z^9-9 z^9 a^{-1} -4 z^9 a^{-3} -7 a^2 z^8+z^8 a^{-2} -3 z^8 a^{-4} -3 z^8-7 a^3 z^7+7 a z^7+30 z^7 a^{-1} +15 z^7 a^{-3} -z^7 a^{-5} -5 a^4 z^6+13 a^2 z^6+13 z^6 a^{-2} +12 z^6 a^{-4} +19 z^6-3 a^5 z^5+12 a^3 z^5+4 a z^5-33 z^5 a^{-1} -18 z^5 a^{-3} +4 z^5 a^{-5} -a^6 z^4+5 a^4 z^4-9 a^2 z^4-16 z^4 a^{-2} -14 z^4 a^{-4} -17 z^4+3 a^5 z^3-11 a^3 z^3-11 a z^3+19 z^3 a^{-1} +12 z^3 a^{-3} -4 z^3 a^{-5} +a^6 z^2-a^4 z^2+7 z^2 a^{-2} +5 z^2 a^{-4} +4 z^2+4 a^3 z+4 a z-4 z a^{-1} -4 z a^{-3} +1-a z^{-1} - a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
12           11
10          2 -2
8         41 3
6        62  -4
4       74   3
2      76    -1
0     97     2
-2    69      3
-4   47       -3
-6  26        4
-8 14         -3
-10 2          2
-121           -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{9}
r=1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.