Notice. The Knot Atlas is now recovering from a major crash. Hopefully all functionality will return slowly over the next few days. --Drorbn (talk) 21:23, 4 July 2013 (EDT)

L10n54

From Knot Atlas
Jump to: navigation, search

L10n53.gif

L10n53

L10n55.gif

L10n55

Contents

L10n54.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n54's page at Knotilus.

Visit L10n54's page at the original Knot Atlas.


Link Presentations

[edit Notes on L10n54's Link Presentations]

Planar diagram presentation X10,1,11,2 X12,4,13,3 X20,12,9,11 X2,9,3,10 X17,5,18,4 X5,19,6,18 X6,14,7,13 X14,8,15,7 X8,16,1,15 X19,17,20,16
Gauss code {1, -4, 2, 5, -6, -7, 8, -9}, {4, -1, 3, -2, 7, -8, 9, 10, -5, 6, -10, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n54 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(2)^3 t(1)^3-t(2)^2 t(1)^3-t(2)^3 t(1)^2-t(1)-t(2)+1}{t(1)^{3/2} t(2)^{3/2}} (db)
Jones polynomial -2 q^{9/2}+2 q^{7/2}-2 q^{5/2}+q^{3/2}+q^{15/2}-2 q^{13/2}+q^{11/2}-\sqrt{q} (db)
Signature 5 (db)
HOMFLY-PT polynomial -z a^{-9} +z^5 a^{-7} +5 z^3 a^{-7} +5 z a^{-7} -z^7 a^{-5} -6 z^5 a^{-5} -11 z^3 a^{-5} -8 z a^{-5} - a^{-5} z^{-1} +z^5 a^{-3} +5 z^3 a^{-3} +6 z a^{-3} + a^{-3} z^{-1} (db)
Kauffman polynomial z^6 a^{-8} -4 z^4 a^{-8} +2 z^2 a^{-8} +2 z^7 a^{-7} -10 z^5 a^{-7} +12 z^3 a^{-7} -3 z a^{-7} +z^8 a^{-6} -4 z^6 a^{-6} +2 z^4 a^{-6} +z^2 a^{-6} +3 z^7 a^{-5} -16 z^5 a^{-5} +23 z^3 a^{-5} -10 z a^{-5} + a^{-5} z^{-1} +z^8 a^{-4} -5 z^6 a^{-4} +6 z^4 a^{-4} -z^2 a^{-4} - a^{-4} +z^7 a^{-3} -6 z^5 a^{-3} +11 z^3 a^{-3} -7 z a^{-3} + a^{-3} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=5 is the signature of L10n54. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-1012345χ
16       1-1
14      1 1
12     12 1
10    111 1
8   11   0
6  11    0
4 12     1
2        0
01       1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4 i=6
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{2} {\mathbb Z}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n53.gif

L10n53

L10n55.gif

L10n55