L10n25

From Knot Atlas
Jump to: navigation, search

L10n24.gif

L10n24

L10n26.gif

L10n26

Contents

L10n25.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n25 at Knotilus!


Link Presentations

[edit Notes on L10n25's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X11,17,12,16 X7,15,8,14 X15,9,16,8 X17,5,18,20 X13,18,14,19 X19,12,20,13 X2536 X4,9,1,10
Gauss code {1, -9, 2, -10}, {9, -1, -4, 5, 10, -2, -3, 8, -7, 4, -5, 3, -6, 7, -8, 6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n25 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v^3-u v^2-2 u v+u+v^5-2 v^4-v^3+v^2}{\sqrt{u} v^{5/2}} (db)
Jones polynomial \frac{1}{q^{9/2}}-q^{7/2}-\frac{2}{q^{7/2}}+q^{5/2}+\frac{1}{q^{5/2}}-\frac{1}{q^{3/2}}-\frac{1}{q^{11/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial z a^5+2 a^5 z^{-1} -2 z^3 a^3-7 z a^3-4 a^3 z^{-1} +z^5 a+5 z^3 a+6 z a+3 a z^{-1} -z a^{-1} - a^{-1} z^{-1} -z a^{-3} (db)
Kauffman polynomial -a^4 z^8-a^2 z^8-a^5 z^7-3 a^3 z^7-2 a z^7+5 a^4 z^6+5 a^2 z^6-z^6 a^{-2} -z^6+6 a^5 z^5+18 a^3 z^5+13 a z^5-z^5 a^{-3} -5 a^4 z^4-3 a^2 z^4+5 z^4 a^{-2} +7 z^4-11 a^5 z^3-30 a^3 z^3-22 a z^3+z^3 a^{-1} +4 z^3 a^{-3} -a^4 z^2-5 a^2 z^2-5 z^2 a^{-2} -9 z^2+8 a^5 z+18 a^3 z+13 a z+z a^{-1} -2 z a^{-3} +2 a^4+3 a^2+ a^{-2} +3-2 a^5 z^{-1} -4 a^3 z^{-1} -3 a z^{-1} - a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-101234χ
8          11
6           0
4       111 -1
2      11   0
0     121   0
-2    122    1
-4   11      0
-6  111      1
-8 12        1
-10           0
-121          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0 i=2
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{2} {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{2} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n24.gif

L10n24

L10n26.gif

L10n26