From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n107 at Knotilus!

L10n107 is the "Borromean chain mail" link - it contains two L6a4 configurations without any L2a1 configuration (i.e. no two loops are linked).

Compare L10a169.

An indefinitely extended "Borromean chainmail" pattern made up of overlapping L10n107 links; no two circles are directly linked.
"Borromean chain-mail" represented with circles
Represented with minimally-overlapping same-size circles

Link Presentations

[edit Notes on L10n107's Link Presentations]

Planar diagram presentation X6172 X5,12,6,13 X8493 X2,16,3,15 X16,7,17,8 X9,11,10,14 X13,15,14,20 X19,5,20,10 X11,18,12,19 X4,17,1,18
Gauss code {1, -4, 3, -10}, {-9, 2, -7, 6}, {-2, -1, 5, -3, -6, 8}, {4, -5, 10, 9, -8, 7}
A Braid Representative
A Morse Link Presentation L10n107 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) 0 (db)
Jones polynomial q^{9/2}+\frac{1}{q^{9/2}}-2 q^{7/2}-\frac{2}{q^{7/2}}+q^{5/2}+\frac{1}{q^{5/2}}-2 q^{3/2}-\frac{2}{q^{3/2}}-2 \sqrt{q}-\frac{2}{\sqrt{q}} (db)
Signature 0 (db)
HOMFLY-PT polynomial -a^3 z^3+z^3 a^{-3} +a^3 z^{-3} - a^{-3} z^{-3} -2 a^3 z+2 z a^{-3} +a z^5-z^5 a^{-1} +5 a z^3-5 z^3 a^{-1} -3 a z^{-3} +3 a^{-1} z^{-3} +6 a z-6 z a^{-1} (db)
Kauffman polynomial -a^2 z^8-z^8 a^{-2} -2 z^8-2 a^3 z^7-4 a z^7-4 z^7 a^{-1} -2 z^7 a^{-3} -a^4 z^6+4 a^2 z^6+4 z^6 a^{-2} -z^6 a^{-4} +10 z^6+10 a^3 z^5+26 a z^5+26 z^5 a^{-1} +10 z^5 a^{-3} +4 a^4 z^4+2 a^2 z^4+2 z^4 a^{-2} +4 z^4 a^{-4} -4 z^4-12 a^3 z^3-44 a z^3-44 z^3 a^{-1} -12 z^3 a^{-3} -2 a^4 z^2-8 a^2 z^2-8 z^2 a^{-2} -2 z^2 a^{-4} -12 z^2+8 a^3 z+24 a z+24 z a^{-1} +8 z a^{-3} +1-3 a z^{-1} -3 a^{-1} z^{-1} +3 a^2 z^{-2} +3 a^{-2} z^{-2} +6 z^{-2} -a^3 z^{-3} -3 a z^{-3} -3 a^{-1} z^{-3} - a^{-3} z^{-3} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
10          1-1
8         1 1
6       111 1
4       21  1
2     521   4
0    282    4
-2   125     4
-4  12       1
-6 111       1
-8 1         1
-101          -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0 i=2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{5} {\mathbb Z}^{8}\oplus{\mathbb Z}_2 {\mathbb Z}^{5}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.