Notice. The Knot Atlas is now recovering from a major crash. Hopefully all functionality will return slowly over the next few days. --Drorbn (talk) 21:23, 4 July 2013 (EDT)


From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a140's page at Knotilus.

Visit L10a140's page at the original Knot Atlas.

Brunnian link. Presumably the simplest Brunnian link other than the Borromean rings.[1] The second in an infinite series of Brunnian links -- if the blue and yellow loops in the illustration below have only one twist along each side, the result is the Borromean rings; if the blue and yellow loops have three twists along each side, the result is this L10a140 link; if the blue and yellow loops have five twists along each side, the result is a three-loop link with 14 overall crossings, etc.[2]

In a visual form which makes it evident that it is a Brunnian link.

Link Presentations

[edit Notes on L10a140's Link Presentations]

Planar diagram presentation X6172 X2,16,3,15 X10,4,11,3 X14,6,15,5 X20,12,13,11 X12,14,5,13 X4,19,1,20 X8,17,9,18 X16,7,17,8 X18,9,19,10
Gauss code {1, -2, 3, -7}, {4, -1, 9, -8, 10, -3, 5, -6}, {6, -4, 2, -9, 8, -10, 7, -5}
A Braid Representative
A Morse Link Presentation L10a140 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) (t(3)-1) (t(2) t(3)+1)^2}{\sqrt{t(1)} t(2)^{3/2} t(3)^{3/2}} (db)
Jones polynomial -q^5+3 q^4-5 q^3+8 q^2-9 q+12-9 q^{-1} +8 q^{-2} -5 q^{-3} +3 q^{-4} - q^{-5} (db)
Signature 0 (db)
HOMFLY-PT polynomial -a^2 z^6-z^6 a^{-2} -4 a^2 z^4-4 z^4 a^{-2} -4 a^2 z^2-4 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} +z^8+6 z^6+12 z^4+8 z^2-2 z^{-2} (db)
Kauffman polynomial 2 a z^9+2 z^9 a^{-1} +4 a^2 z^8+4 z^8 a^{-2} +8 z^8+4 a^3 z^7-2 a z^7-2 z^7 a^{-1} +4 z^7 a^{-3} +3 a^4 z^6-11 a^2 z^6-11 z^6 a^{-2} +3 z^6 a^{-4} -28 z^6+a^5 z^5-9 a^3 z^5-2 a z^5-2 z^5 a^{-1} -9 z^5 a^{-3} +z^5 a^{-5} -7 a^4 z^4+14 a^2 z^4+14 z^4 a^{-2} -7 z^4 a^{-4} +42 z^4-2 a^5 z^3+4 a^3 z^3+6 a z^3+6 z^3 a^{-1} +4 z^3 a^{-3} -2 z^3 a^{-5} +2 a^4 z^2-8 a^2 z^2-8 z^2 a^{-2} +2 z^2 a^{-4} -20 z^2+1-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=0 is the signature of L10a140. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
j \
11          1-1
9         2 2
7        31 -2
5       52  3
3      43   -1
1     85    3
-1    58     3
-3   34      -1
-5  25       3
-7 13        -2
-9 2         2
-111          -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{8}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.