From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a92 at Knotilus!

Knot presentations

Planar diagram presentation X4251 X10,3,11,4 X12,6,13,5 X16,7,17,8 X22,10,1,9 X2,11,3,12 X18,13,19,14 X20,15,21,16 X8,17,9,18 X14,19,15,20 X6,22,7,21
Gauss code 1, -6, 2, -1, 3, -11, 4, -9, 5, -2, 6, -3, 7, -10, 8, -4, 9, -7, 10, -8, 11, -5
Dowker-Thistlethwaite code 4 10 12 16 22 2 18 20 8 14 6
A Braid Representative
A Morse Link Presentation K11a92 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number \{1,2\}
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a92/ThurstonBennequinNumber
Hyperbolic Volume 14.2422
A-Polynomial See Data:K11a92/A-polynomial

[edit Notes for K11a92's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 4
Rasmussen s-Invariant 2

[edit Notes for K11a92's four dimensional invariants]

Polynomial invariants

Alexander polynomial -t^4+5 t^3-12 t^2+21 t-25+21 t^{-1} -12 t^{-2} +5 t^{-3} - t^{-4}
Conway polynomial -z^8-3 z^6-2 z^4+2 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 103, -2 }
Jones polynomial q^3-3 q^2+6 q-10+14 q^{-1} -16 q^{-2} +17 q^{-3} -14 q^{-4} +11 q^{-5} -7 q^{-6} +3 q^{-7} - q^{-8}
HOMFLY-PT polynomial (db, data sources) -a^2 z^8+2 a^4 z^6-6 a^2 z^6+z^6-a^6 z^4+9 a^4 z^4-14 a^2 z^4+4 z^4-3 a^6 z^2+14 a^4 z^2-14 a^2 z^2+5 z^2-3 a^6+7 a^4-5 a^2+2
Kauffman polynomial (db, data sources) a^4 z^{10}+a^2 z^{10}+4 a^5 z^9+7 a^3 z^9+3 a z^9+6 a^6 z^8+10 a^4 z^8+8 a^2 z^8+4 z^8+5 a^7 z^7-3 a^5 z^7-13 a^3 z^7-2 a z^7+3 z^7 a^{-1} +3 a^8 z^6-12 a^6 z^6-34 a^4 z^6-30 a^2 z^6+z^6 a^{-2} -10 z^6+a^9 z^5-8 a^7 z^5-5 a^5 z^5+3 a^3 z^5-10 a z^5-9 z^5 a^{-1} -5 a^8 z^4+13 a^6 z^4+47 a^4 z^4+39 a^2 z^4-3 z^4 a^{-2} +7 z^4-2 a^9 z^3+3 a^7 z^3+12 a^5 z^3+12 a^3 z^3+12 a z^3+7 z^3 a^{-1} +a^8 z^2-10 a^6 z^2-27 a^4 z^2-23 a^2 z^2+2 z^2 a^{-2} -5 z^2+a^9 z-2 a^7 z-6 a^5 z-6 a^3 z-5 a z-2 z a^{-1} +3 a^6+7 a^4+5 a^2+2
The A2 invariant -q^{24}-q^{20}-2 q^{18}+3 q^{16}-q^{14}+3 q^{12}+2 q^{10}-q^8+3 q^6-4 q^4+2 q^2-1- q^{-2} +2 q^{-4} - q^{-6} + q^{-8}
The G2 invariant q^{128}-2 q^{126}+5 q^{124}-8 q^{122}+9 q^{120}-7 q^{118}+13 q^{114}-28 q^{112}+43 q^{110}-53 q^{108}+43 q^{106}-19 q^{104}-24 q^{102}+81 q^{100}-127 q^{98}+153 q^{96}-137 q^{94}+64 q^{92}+41 q^{90}-162 q^{88}+249 q^{86}-269 q^{84}+202 q^{82}-65 q^{80}-105 q^{78}+239 q^{76}-286 q^{74}+225 q^{72}-84 q^{70}-83 q^{68}+194 q^{66}-206 q^{64}+112 q^{62}+54 q^{60}-202 q^{58}+279 q^{56}-224 q^{54}+60 q^{52}+159 q^{50}-339 q^{48}+423 q^{46}-355 q^{44}+170 q^{42}+81 q^{40}-299 q^{38}+419 q^{36}-394 q^{34}+241 q^{32}-23 q^{30}-180 q^{28}+282 q^{26}-261 q^{24}+132 q^{22}+42 q^{20}-183 q^{18}+218 q^{16}-148 q^{14}-7 q^{12}+172 q^{10}-275 q^8+271 q^6-166 q^4-2 q^2+163-265 q^{-2} +280 q^{-4} -203 q^{-6} +83 q^{-8} +43 q^{-10} -134 q^{-12} +170 q^{-14} -152 q^{-16} +102 q^{-18} -37 q^{-20} -18 q^{-22} +51 q^{-24} -61 q^{-26} +52 q^{-28} -32 q^{-30} +15 q^{-32} + q^{-34} -10 q^{-36} +10 q^{-38} -9 q^{-40} +5 q^{-42} -2 q^{-44} + q^{-46}

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {}

Vassiliev invariants

V2 and V3: (2, -5)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
8 -40 32 \frac{460}{3} \frac{92}{3} -320 -\frac{1936}{3} -\frac{256}{3} -104 \frac{256}{3} 800 \frac{3680}{3} \frac{736}{3} \frac{48391}{15} \frac{1036}{15} \frac{56884}{45} \frac{377}{9} \frac{2071}{15}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=-2 is the signature of K11a92. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
j \
7           11
5          2 -2
3         41 3
1        62  -4
-1       84   4
-3      97    -2
-5     87     1
-7    69      3
-9   58       -3
-11  26        4
-13 15         -4
-15 2          2
-171           -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.