K11a276

From Knot Atlas
Jump to: navigation, search

K11a275.gif

K11a275

K11a277.gif

K11a277

Contents

K11a276.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a276 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X10,4,11,3 X14,6,15,5 X20,8,21,7 X4,10,5,9 X18,12,19,11 X2,14,3,13 X22,15,1,16 X8,18,9,17 X12,20,13,19 X16,21,17,22
Gauss code 1, -7, 2, -5, 3, -1, 4, -9, 5, -2, 6, -10, 7, -3, 8, -11, 9, -6, 10, -4, 11, -8
Dowker-Thistlethwaite code 6 10 14 20 4 18 2 22 8 12 16
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a276 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a276/ThurstonBennequinNumber
Hyperbolic Volume 18.3556
A-Polynomial See Data:K11a276/A-polynomial

[edit Notes for K11a276's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 3
Rasmussen s-Invariant -4

[edit Notes for K11a276's four dimensional invariants]

Polynomial invariants

Alexander polynomial -3 t^3+17 t^2-37 t+47-37 t^{-1} +17 t^{-2} -3 t^{-3}
Conway polynomial -3 z^6-z^4+4 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 161, 4 }
Jones polynomial -q^{11}+4 q^{10}-10 q^9+17 q^8-23 q^7+26 q^6-26 q^5+23 q^4-16 q^3+10 q^2-4 q+1
HOMFLY-PT polynomial (db, data sources) -z^6 a^{-4} -2 z^6 a^{-6} +z^4 a^{-2} -5 z^4 a^{-6} +3 z^4 a^{-8} +z^2 a^{-2} +4 z^2 a^{-4} -5 z^2 a^{-6} +5 z^2 a^{-8} -z^2 a^{-10} +3 a^{-4} -3 a^{-6} +2 a^{-8} - a^{-10}
Kauffman polynomial (db, data sources) 3 z^{10} a^{-6} +3 z^{10} a^{-8} +8 z^9 a^{-5} +17 z^9 a^{-7} +9 z^9 a^{-9} +8 z^8 a^{-4} +14 z^8 a^{-6} +18 z^8 a^{-8} +12 z^8 a^{-10} +4 z^7 a^{-3} -12 z^7 a^{-5} -28 z^7 a^{-7} -3 z^7 a^{-9} +9 z^7 a^{-11} +z^6 a^{-2} -18 z^6 a^{-4} -45 z^6 a^{-6} -48 z^6 a^{-8} -18 z^6 a^{-10} +4 z^6 a^{-12} -8 z^5 a^{-3} +2 z^5 a^{-5} +8 z^5 a^{-7} -16 z^5 a^{-9} -13 z^5 a^{-11} +z^5 a^{-13} -2 z^4 a^{-2} +15 z^4 a^{-4} +40 z^4 a^{-6} +39 z^4 a^{-8} +12 z^4 a^{-10} -4 z^4 a^{-12} +4 z^3 a^{-3} +z^3 a^{-5} +2 z^3 a^{-7} +15 z^3 a^{-9} +9 z^3 a^{-11} -z^3 a^{-13} +z^2 a^{-2} -8 z^2 a^{-4} -17 z^2 a^{-6} -14 z^2 a^{-8} -5 z^2 a^{-10} +z^2 a^{-12} -z a^{-5} -z a^{-7} -3 z a^{-9} -3 z a^{-11} +3 a^{-4} +3 a^{-6} +2 a^{-8} + a^{-10}
The A2 invariant Data:K11a276/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a276/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {}

Vassiliev invariants

V2 and V3: (4, 9)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
16 72 128 \frac{1208}{3} \frac{208}{3} 1152 2416 384 424 \frac{2048}{3} 2592 \frac{19328}{3} \frac{3328}{3} \frac{219182}{15} -\frac{2976}{5} \frac{308048}{45} \frac{2530}{9} \frac{14222}{15}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=4 is the signature of K11a276. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-10123456789χ
23           1-1
21          3 3
19         71 -6
17        103  7
15       137   -6
13      1310    3
11     1313     0
9    1013      -3
7   613       7
5  410        -6
3 17         6
1 3          -3
-11           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=3 i=5
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=2 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=3 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{13}
r=4 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{13}
r=5 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{13}
r=6 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=7 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=8 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=9 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a275.gif

K11a275

K11a277.gif

K11a277