K11a149

From Knot Atlas
Jump to: navigation, search

K11a148.gif

K11a148

K11a150.gif

K11a150

Contents

K11a149.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a149 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,3,11,4 X16,6,17,5 X20,7,21,8 X12,10,13,9 X2,11,3,12 X18,14,19,13 X8,16,9,15 X22,18,1,17 X14,20,15,19 X6,21,7,22
Gauss code 1, -6, 2, -1, 3, -11, 4, -8, 5, -2, 6, -5, 7, -10, 8, -3, 9, -7, 10, -4, 11, -9
Dowker-Thistlethwaite code 4 10 16 20 12 2 18 8 22 14 6
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a149 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number 1
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a149/ThurstonBennequinNumber
Hyperbolic Volume 16.2663
A-Polynomial See Data:K11a149/A-polynomial

[edit Notes for K11a149's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 3
Rasmussen s-Invariant -2

[edit Notes for K11a149's four dimensional invariants]

Polynomial invariants

Alexander polynomial 2 t^3-12 t^2+30 t-39+30 t^{-1} -12 t^{-2} +2 t^{-3}
Conway polynomial 2 z^6+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 127, 2 }
Jones polynomial -q^8+4 q^7-9 q^6+14 q^5-18 q^4+21 q^3-20 q^2+17 q-12+7 q^{-1} -3 q^{-2} + q^{-3}
HOMFLY-PT polynomial (db, data sources) z^6 a^{-2} +z^6 a^{-4} +z^4 a^{-2} +2 z^4 a^{-4} -z^4 a^{-6} -2 z^4+a^2 z^2+3 z^2 a^{-4} -z^2 a^{-6} -3 z^2+a^2+2 a^{-4} - a^{-6} -1
Kauffman polynomial (db, data sources) 2 z^{10} a^{-2} +2 z^{10} a^{-4} +4 z^9 a^{-1} +11 z^9 a^{-3} +7 z^9 a^{-5} +5 z^8 a^{-2} +11 z^8 a^{-4} +10 z^8 a^{-6} +4 z^8+3 a z^7-4 z^7 a^{-1} -24 z^7 a^{-3} -9 z^7 a^{-5} +8 z^7 a^{-7} +a^2 z^6-16 z^6 a^{-2} -33 z^6 a^{-4} -20 z^6 a^{-6} +4 z^6 a^{-8} -6 z^6-8 a z^5-3 z^5 a^{-1} +23 z^5 a^{-3} +4 z^5 a^{-5} -13 z^5 a^{-7} +z^5 a^{-9} -3 a^2 z^4+12 z^4 a^{-2} +34 z^4 a^{-4} +17 z^4 a^{-6} -5 z^4 a^{-8} -3 z^4+6 a z^3+z^3 a^{-1} -11 z^3 a^{-3} +5 z^3 a^{-7} -z^3 a^{-9} +3 a^2 z^2-4 z^2 a^{-2} -13 z^2 a^{-4} -7 z^2 a^{-6} +5 z^2-a z+2 z a^{-3} -z a^{-7} -a^2+2 a^{-4} + a^{-6} -1
The A2 invariant Data:K11a149/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a149/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a1, K11a122,}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {K11a1,}

Vassiliev invariants

V2 and V3: (0, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
0 16 0 32 0 0 \frac{160}{3} -\frac{224}{3} 80 0 128 0 0 304 -\frac{976}{3} 448 0 64

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=2 is the signature of K11a149. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          3 3
13         61 -5
11        83  5
9       106   -4
7      118    3
5     910     1
3    811      -3
1   510       5
-1  27        -5
-3 15         4
-5 2          -2
-71           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=1 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=2 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a148.gif

K11a148

K11a150.gif

K11a150