K11a126

From Knot Atlas
Jump to: navigation, search

K11a125.gif

K11a125

K11a127.gif

K11a127

Contents

K11a126.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a126 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,4,11,3 X14,5,15,6 X20,8,21,7 X2,10,3,9 X16,11,17,12 X22,13,1,14 X8,15,9,16 X12,17,13,18 X6,20,7,19 X18,22,19,21
Gauss code 1, -5, 2, -1, 3, -10, 4, -8, 5, -2, 6, -9, 7, -3, 8, -6, 9, -11, 10, -4, 11, -7
Dowker-Thistlethwaite code 4 10 14 20 2 16 22 8 12 6 18
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation K11a126 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number \{1,2,3\}
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a126/ThurstonBennequinNumber
Hyperbolic Volume 17.2092
A-Polynomial See Data:K11a126/A-polynomial

[edit Notes for K11a126's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 4
Rasmussen s-Invariant 0

[edit Notes for K11a126's four dimensional invariants]

Polynomial invariants

Alexander polynomial t^4-5 t^3+16 t^2-31 t+39-31 t^{-1} +16 t^{-2} -5 t^{-3} + t^{-4}
Conway polynomial z^8+3 z^6+6 z^4+4 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 145, 0 }
Jones polynomial q^6-5 q^5+10 q^4-16 q^3+21 q^2-23 q+24-19 q^{-1} +14 q^{-2} -8 q^{-3} +3 q^{-4} - q^{-5}
HOMFLY-PT polynomial (db, data sources) z^8-a^2 z^6-2 z^6 a^{-2} +6 z^6-4 a^2 z^4-7 z^4 a^{-2} +z^4 a^{-4} +16 z^4-7 a^2 z^2-9 z^2 a^{-2} +z^2 a^{-4} +19 z^2-4 a^2-4 a^{-2} +9
Kauffman polynomial (db, data sources) 2 z^{10} a^{-2} +2 z^{10}+6 a z^9+13 z^9 a^{-1} +7 z^9 a^{-3} +8 a^2 z^8+17 z^8 a^{-2} +9 z^8 a^{-4} +16 z^8+6 a^3 z^7-16 z^7 a^{-1} -5 z^7 a^{-3} +5 z^7 a^{-5} +3 a^4 z^6-13 a^2 z^6-50 z^6 a^{-2} -20 z^6 a^{-4} +z^6 a^{-6} -45 z^6+a^5 z^5-9 a^3 z^5-16 a z^5-13 z^5 a^{-1} -17 z^5 a^{-3} -10 z^5 a^{-5} -4 a^4 z^4+15 a^2 z^4+41 z^4 a^{-2} +11 z^4 a^{-4} -z^4 a^{-6} +48 z^4-2 a^5 z^3+7 a^3 z^3+23 a z^3+25 z^3 a^{-1} +15 z^3 a^{-3} +4 z^3 a^{-5} +a^4 z^2-11 a^2 z^2-17 z^2 a^{-2} -2 z^2 a^{-4} -27 z^2+a^5 z-3 a^3 z-10 a z-10 z a^{-1} -3 z a^{-3} +z a^{-5} +4 a^2+4 a^{-2} +9
The A2 invariant -q^{14}+q^{12}-4 q^{10}+q^8+q^6-3 q^4+7 q^2-1+5 q^{-2} + q^{-4} -2 q^{-6} +3 q^{-8} -5 q^{-10} + q^{-12} -2 q^{-16} + q^{-18}
The G2 invariant q^{80}-2 q^{78}+5 q^{76}-8 q^{74}+10 q^{72}-10 q^{70}+4 q^{68}+10 q^{66}-29 q^{64}+52 q^{62}-73 q^{60}+75 q^{58}-57 q^{56}+5 q^{54}+81 q^{52}-176 q^{50}+264 q^{48}-301 q^{46}+243 q^{44}-90 q^{42}-162 q^{40}+435 q^{38}-642 q^{36}+679 q^{34}-495 q^{32}+97 q^{30}+391 q^{28}-790 q^{26}+940 q^{24}-756 q^{22}+286 q^{20}+280 q^{18}-717 q^{16}+822 q^{14}-537 q^{12}+9 q^{10}+548 q^8-837 q^6+717 q^4-214 q^2-464+1042 q^{-2} -1252 q^{-4} +998 q^{-6} -336 q^{-8} -472 q^{-10} +1152 q^{-12} -1438 q^{-14} +1242 q^{-16} -639 q^{-18} -146 q^{-20} +810 q^{-22} -1127 q^{-24} +1002 q^{-26} -494 q^{-28} -155 q^{-30} +664 q^{-32} -825 q^{-34} +565 q^{-36} -24 q^{-38} -560 q^{-40} +909 q^{-42} -872 q^{-44} +456 q^{-46} +157 q^{-48} -722 q^{-50} +1015 q^{-52} -936 q^{-54} +549 q^{-56} -32 q^{-58} -426 q^{-60} +665 q^{-62} -654 q^{-64} +456 q^{-66} -172 q^{-68} -78 q^{-70} +221 q^{-72} -254 q^{-74} +198 q^{-76} -107 q^{-78} +32 q^{-80} +21 q^{-82} -39 q^{-84} +35 q^{-86} -24 q^{-88} +11 q^{-90} -4 q^{-92} + q^{-94}

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {}

Vassiliev invariants

V2 and V3: (4, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
16 0 128 \frac{440}{3} \frac{40}{3} 0 0 32 -32 \frac{2048}{3} 0 \frac{7040}{3} \frac{640}{3} \frac{34622}{15} \frac{1144}{5} \frac{26648}{45} \frac{322}{9} \frac{542}{15}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=0 is the signature of K11a126. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10123456χ
13           11
11          4 -4
9         61 5
7        104  -6
5       116   5
3      1210    -2
1     1211     1
-1    813      5
-3   611       -5
-5  28        6
-7 16         -5
-9 2          2
-111           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=0 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{12}
r=1 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=2 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a125.gif

K11a125

K11a127.gif

K11a127