K11a112

From Knot Atlas
Jump to: navigation, search

K11a111.gif

K11a111

K11a113.gif

K11a113

Contents

K11a112.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a112 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,3,11,4 X14,6,15,5 X16,8,17,7 X18,9,19,10 X2,11,3,12 X20,13,21,14 X6,16,7,15 X22,18,1,17 X12,19,13,20 X8,21,9,22
Gauss code 1, -6, 2, -1, 3, -8, 4, -11, 5, -2, 6, -10, 7, -3, 8, -4, 9, -5, 10, -7, 11, -9
Dowker-Thistlethwaite code 4 10 14 16 18 2 20 6 22 12 8
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation K11a112 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number \{1,2\}
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a112/ThurstonBennequinNumber
Hyperbolic Volume 16.343
A-Polynomial See Data:K11a112/A-polynomial

[edit Notes for K11a112's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 1
Rasmussen s-Invariant 0

[edit Notes for K11a112's four dimensional invariants]

Polynomial invariants

Alexander polynomial t^4-6 t^3+15 t^2-25 t+31-25 t^{-1} +15 t^{-2} -6 t^{-3} + t^{-4}
Conway polynomial z^8+2 z^6-z^4-3 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 125, 0 }
Jones polynomial -q^5+4 q^4-8 q^3+14 q^2-18 q+20-20 q^{-1} +17 q^{-2} -12 q^{-3} +7 q^{-4} -3 q^{-5} + q^{-6}
HOMFLY-PT polynomial (db, data sources) z^8-2 a^2 z^6-z^6 a^{-2} +5 z^6+a^4 z^4-8 a^2 z^4-3 z^4 a^{-2} +9 z^4+3 a^4 z^2-10 a^2 z^2-2 z^2 a^{-2} +6 z^2+2 a^4-3 a^2+ a^{-2} +1
Kauffman polynomial (db, data sources) 2 a^2 z^{10}+2 z^{10}+5 a^3 z^9+11 a z^9+6 z^9 a^{-1} +5 a^4 z^8+7 a^2 z^8+8 z^8 a^{-2} +10 z^8+3 a^5 z^7-10 a^3 z^7-24 a z^7-4 z^7 a^{-1} +7 z^7 a^{-3} +a^6 z^6-13 a^4 z^6-30 a^2 z^6-10 z^6 a^{-2} +4 z^6 a^{-4} -30 z^6-8 a^5 z^5+6 a^3 z^5+19 a z^5-6 z^5 a^{-1} -10 z^5 a^{-3} +z^5 a^{-5} -3 a^6 z^4+12 a^4 z^4+39 a^2 z^4-6 z^4 a^{-4} +30 z^4+5 a^5 z^3-2 a^3 z^3-3 a z^3+8 z^3 a^{-1} +3 z^3 a^{-3} -z^3 a^{-5} +2 a^6 z^2-8 a^4 z^2-21 a^2 z^2+3 z^2 a^{-2} +2 z^2 a^{-4} -10 z^2-a^5 z-a z-3 z a^{-1} -z a^{-3} +2 a^4+3 a^2- a^{-2} +1
The A2 invariant q^{18}+2 q^{12}-3 q^{10}+3 q^8-q^6-2 q^4+2 q^2-5+4 q^{-2} -2 q^{-4} +2 q^{-6} +3 q^{-8} -2 q^{-10} +2 q^{-12} - q^{-14}
The G2 invariant q^{94}-2 q^{92}+5 q^{90}-9 q^{88}+11 q^{86}-12 q^{84}+5 q^{82}+11 q^{80}-32 q^{78}+59 q^{76}-80 q^{74}+82 q^{72}-56 q^{70}-11 q^{68}+115 q^{66}-222 q^{64}+297 q^{62}-283 q^{60}+156 q^{58}+70 q^{56}-331 q^{54}+533 q^{52}-570 q^{50}+403 q^{48}-73 q^{46}-309 q^{44}+581 q^{42}-627 q^{40}+434 q^{38}-68 q^{36}-299 q^{34}+502 q^{32}-461 q^{30}+179 q^{28}+200 q^{26}-506 q^{24}+596 q^{22}-418 q^{20}+36 q^{18}+410 q^{16}-746 q^{14}+838 q^{12}-646 q^{10}+216 q^8+289 q^6-705 q^4+874 q^2-737+363 q^{-2} +107 q^{-4} -487 q^{-6} +626 q^{-8} -488 q^{-10} +146 q^{-12} +231 q^{-14} -463 q^{-16} +455 q^{-18} -206 q^{-20} -151 q^{-22} +463 q^{-24} -584 q^{-26} +485 q^{-28} -208 q^{-30} -138 q^{-32} +410 q^{-34} -527 q^{-36} +476 q^{-38} -288 q^{-40} +60 q^{-42} +137 q^{-44} -258 q^{-46} +281 q^{-48} -233 q^{-50} +141 q^{-52} -39 q^{-54} -40 q^{-56} +83 q^{-58} -94 q^{-60} +78 q^{-62} -47 q^{-64} +20 q^{-66} +3 q^{-68} -14 q^{-70} +15 q^{-72} -13 q^{-74} +7 q^{-76} -3 q^{-78} + q^{-80}

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {K11a5,}

Vassiliev invariants

V2 and V3: (-3, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
-12 16 72 98 46 -192 -\frac{1088}{3} -\frac{320}{3} -80 -288 128 -1176 -552 -\frac{6991}{10} \frac{862}{5} -\frac{3994}{5} \frac{293}{2} -\frac{2031}{10}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=0 is the signature of K11a112. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
11           1-1
9          3 3
7         51 -4
5        93  6
3       95   -4
1      119    2
-1     1010     0
-3    710      -3
-5   510       5
-7  27        -5
-9 15         4
-11 2          -2
-131           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=0 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{11}
r=1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a111.gif

K11a111

K11a113.gif

K11a113