9 24

From Knot Atlas
Jump to: navigation, search

9 23.gif

9_23

9 25.gif

9_25

Contents

9 24.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 24's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 24 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3849 X5,14,6,15 X9,17,10,16 X11,1,12,18 X17,11,18,10 X15,13,16,12 X13,6,14,7 X7283
Gauss code -1, 9, -2, 1, -3, 8, -9, 2, -4, 6, -5, 7, -8, 3, -7, 4, -6, 5
Dowker-Thistlethwaite code 4 8 14 2 16 18 6 12 10
Conway Notation [3,21,2+]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif

Length is 9, width is 4,

Braid index is 4

9 24 ML.gif 9 24 AP.gif
[{12, 4}, {3, 10}, {8, 11}, {10, 12}, {9, 5}, {4, 8}, {6, 9}, {5, 7}, {2, 6}, {1, 3}, {11, 2}, {7, 1}]

[edit Notes on presentations of 9 24]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 3
Bridge index 3
Super bridge index \{4,6\}
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-5]
Hyperbolic Volume 10.8337
A-Polynomial See Data:9 24/A-polynomial

[edit Notes for 9 24's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus 1
Topological 4 genus 1
Concordance genus 1
Rasmussen s-Invariant 0

[edit Notes for 9 24's four dimensional invariants]

Polynomial invariants

Alexander polynomial -t^3+5 t^2-10 t+13-10 t^{-1} +5 t^{-2} - t^{-3}
Conway polynomial -z^6-z^4+z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 45, 0 }
Jones polynomial q^4-3 q^3+5 q^2-7 q+8-7 q^{-1} +7 q^{-2} -4 q^{-3} +2 q^{-4} - q^{-5}
HOMFLY-PT polynomial (db, data sources) -z^6+2 a^2 z^4+z^4 a^{-2} -4 z^4-a^4 z^2+6 a^2 z^2+2 z^2 a^{-2} -6 z^2-2 a^4+5 a^2+ a^{-2} -3
Kauffman polynomial (db, data sources) a^2 z^8+z^8+2 a^3 z^7+5 a z^7+3 z^7 a^{-1} +2 a^4 z^6+3 a^2 z^6+4 z^6 a^{-2} +5 z^6+a^5 z^5-2 a^3 z^5-7 a z^5-z^5 a^{-1} +3 z^5 a^{-3} -5 a^4 z^4-10 a^2 z^4-5 z^4 a^{-2} +z^4 a^{-4} -11 z^4-3 a^5 z^3-3 a^3 z^3+a z^3-3 z^3 a^{-1} -4 z^3 a^{-3} +4 a^4 z^2+10 a^2 z^2+2 z^2 a^{-2} -z^2 a^{-4} +9 z^2+2 a^5 z+3 a^3 z+2 a z+2 z a^{-1} +z a^{-3} -2 a^4-5 a^2- a^{-2} -3
The A2 invariant -q^{16}-q^{14}-q^{10}+3 q^8+2 q^6+q^4+2 q^2-2+ q^{-2} -2 q^{-4} + q^{-8} - q^{-10} + q^{-12}
The G2 invariant q^{80}-q^{78}+3 q^{76}-4 q^{74}+3 q^{72}-3 q^{70}-3 q^{68}+9 q^{66}-16 q^{64}+19 q^{62}-19 q^{60}+8 q^{58}+7 q^{56}-26 q^{54}+41 q^{52}-47 q^{50}+34 q^{48}-11 q^{46}-23 q^{44}+45 q^{42}-53 q^{40}+46 q^{38}-16 q^{36}-11 q^{34}+34 q^{32}-36 q^{30}+22 q^{28}+10 q^{26}-32 q^{24}+44 q^{22}-27 q^{20}+2 q^{18}+37 q^{16}-60 q^{14}+71 q^{12}-55 q^{10}+21 q^8+20 q^6-60 q^4+77 q^2-69+40 q^{-2} -4 q^{-4} -32 q^{-6} +46 q^{-8} -43 q^{-10} +18 q^{-12} +8 q^{-14} -31 q^{-16} +33 q^{-18} -15 q^{-20} -14 q^{-22} +41 q^{-24} -50 q^{-26} +44 q^{-28} -20 q^{-30} -11 q^{-32} +35 q^{-34} -48 q^{-36} +47 q^{-38} -29 q^{-40} +9 q^{-42} +9 q^{-44} -21 q^{-46} +24 q^{-48} -19 q^{-50} +13 q^{-52} -4 q^{-54} -2 q^{-56} +4 q^{-58} -6 q^{-60} +4 q^{-62} -2 q^{-64} + q^{-66}