9 20

From Knot Atlas
Jump to: navigation, search

9 19.gif

9_19

9 21.gif

9_21

Contents

9 20.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 20's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 20 at Knotilus!

From knotilus

Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X5,14,6,15 X7,16,8,17 X11,1,12,18 X15,6,16,7 X17,13,18,12 X13,8,14,9 X9,2,10,3
Gauss code -1, 9, -2, 1, -3, 6, -4, 8, -9, 2, -5, 7, -8, 3, -6, 4, -7, 5
Dowker-Thistlethwaite code 4 10 14 16 2 18 8 6 12
Conway Notation [31212]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif

Length is 9, width is 4,

Braid index is 4

9 20 ML.gif 9 20 AP.gif
[{12, 2}, {1, 10}, {8, 11}, {10, 12}, {9, 3}, {2, 4}, {3, 5}, {4, 8}, {6, 9}, {5, 7}, {11, 6}, {7, 1}]

[edit Notes on presentations of 9 20]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 2
Super bridge index \{4,6\}
Nakanishi index 1
Maximal Thurston-Bennequin number [-12][1]
Hyperbolic Volume 9.6443
A-Polynomial See Data:9 20/A-polynomial

[edit Notes for 9 20's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus 2
Topological 4 genus 2
Concordance genus 3
Rasmussen s-Invariant -4

[edit Notes for 9 20's four dimensional invariants]

Polynomial invariants

Alexander polynomial -t^3+5 t^2-9 t+11-9 t^{-1} +5 t^{-2} - t^{-3}
Conway polynomial -z^6-z^4+2 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 41, -4 }
Jones polynomial 1-2 q^{-1} +4 q^{-2} -5 q^{-3} +7 q^{-4} -7 q^{-5} +6 q^{-6} -5 q^{-7} +3 q^{-8} - q^{-9}
HOMFLY-PT polynomial (db, data sources) -z^2 a^8-a^8+2 z^4 a^6+5 z^2 a^6+2 a^6-z^6 a^4-4 z^4 a^4-5 z^2 a^4-2 a^4+z^4 a^2+3 z^2 a^2+2 a^2
Kauffman polynomial (db, data sources) z^3 a^{11}+3 z^4 a^{10}-z^2 a^{10}+5 z^5 a^9-5 z^3 a^9+2 z a^9+5 z^6 a^8-6 z^4 a^8+3 z^2 a^8-a^8+3 z^7 a^7-7 z^3 a^7+2 z a^7+z^8 a^6+5 z^6 a^6-16 z^4 a^6+10 z^2 a^6-2 a^6+5 z^7 a^5-12 z^5 a^5+5 z^3 a^5+z^8 a^4+z^6 a^4-11 z^4 a^4+11 z^2 a^4-2 a^4+2 z^7 a^3-7 z^5 a^3+6 z^3 a^3+z^6 a^2-4 z^4 a^2+5 z^2 a^2-2 a^2
The A2 invariant -q^{28}+q^{24}-q^{22}+q^{20}-q^{18}+q^{14}-q^{12}+2 q^{10}-q^8+q^6+q^4+1
The G2 invariant q^{148}-2 q^{146}+3 q^{144}-4 q^{142}+2 q^{140}-q^{138}-2 q^{136}+9 q^{134}-12 q^{132}+15 q^{130}-13 q^{128}+5 q^{126}+2 q^{124}-13 q^{122}+23 q^{120}-27 q^{118}+23 q^{116}-13 q^{114}-q^{112}+15 q^{110}-23 q^{108}+25 q^{106}-21 q^{104}+5 q^{102}+7 q^{100}-17 q^{98}+16 q^{96}-5 q^{94}-9 q^{92}+23 q^{90}-24 q^{88}+14 q^{86}+3 q^{84}-26 q^{82}+44 q^{80}-44 q^{78}+30 q^{76}-4 q^{74}-21 q^{72}+43 q^{70}-45 q^{68}+33 q^{66}-17 q^{64}-6 q^{62}+22 q^{60}-28 q^{58}+22 q^{56}-6 q^{54}-9 q^{52}+19 q^{50}-19 q^{48}+7 q^{46}+8 q^{44}-23 q^{42}+31 q^{40}-28 q^{38}+12 q^{36}+10 q^{34}-26 q^{32}+36 q^{30}-30 q^{28}+17 q^{26}-q^{24}-13 q^{22}+21 q^{20}-19 q^{18}+14 q^{16}-3 q^{14}-2 q^{12}+5 q^{10}-5 q^8+4 q^6-q^4+q^2