# 10 148 (KnotPlot image) See the full Rolfsen Knot Table. Visit 10 148's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10 148 at Knotilus!

### Knot presentations

 Planar diagram presentation X4251 X8493 X5,12,6,13 X13,18,14,19 X9,16,10,17 X17,10,18,11 X15,20,16,1 X19,14,20,15 X11,6,12,7 X2837 Gauss code 1, -10, 2, -1, -3, 9, 10, -2, -5, 6, -9, 3, -4, 8, -7, 5, -6, 4, -8, 7 Dowker-Thistlethwaite code 4 8 -12 2 -16 -6 -18 -20 -10 -14 Conway Notation [(3,2)(3,2-)]

### Three dimensional invariants

 Symmetry type Chiral Unknotting number 2 3-genus 3 Bridge index 3 Super bridge index Missing Nakanishi index 1 Maximal Thurston-Bennequin number [-10] Hyperbolic Volume 10.2602 A-Polynomial See Data:10 148/A-polynomial

### Four dimensional invariants

 Smooth 4 genus $1$ Topological 4 genus $1$ Concordance genus $3$ Rasmussen s-Invariant 2

### Polynomial invariants

 Alexander polynomial $t^3-3 t^2+7 t-9+7 t^{-1} -3 t^{-2} + t^{-3}$ Conway polynomial $z^6+3 z^4+4 z^2+1$ 2nd Alexander ideal (db, data sources) $\{1\}$ Determinant and Signature { 31, -2 } Jones polynomial $-1+3 q^{-1} -4 q^{-2} +6 q^{-3} -5 q^{-4} +5 q^{-5} -4 q^{-6} +2 q^{-7} - q^{-8}$ HOMFLY-PT polynomial (db, data sources) $-z^4 a^6-3 z^2 a^6-3 a^6+z^6 a^4+5 z^4 a^4+9 z^2 a^4+5 a^4-z^4 a^2-2 z^2 a^2-a^2$ Kauffman polynomial (db, data sources) $z^5 a^9-3 z^3 a^9+2 z a^9+2 z^6 a^8-5 z^4 a^8+2 z^2 a^8+2 z^7 a^7-4 z^5 a^7+z^3 a^7-z a^7+z^8 a^6-z^6 a^6+2 z^4 a^6-6 z^2 a^6+3 a^6+3 z^7 a^5-7 z^5 a^5+9 z^3 a^5-5 z a^5+z^8 a^4-3 z^6 a^4+10 z^4 a^4-11 z^2 a^4+5 a^4+z^7 a^3-2 z^5 a^3+6 z^3 a^3-3 z a^3+3 z^4 a^2-3 z^2 a^2+a^2+z^3 a-z a$ The A2 invariant $-q^{24}-2 q^{20}-q^{18}+q^{16}+3 q^{12}+q^{10}+2 q^8+q^6-q^4+q^2-1$ The G2 invariant $q^{128}-q^{126}+3 q^{124}-4 q^{122}+3 q^{120}-q^{118}-3 q^{116}+9 q^{114}-13 q^{112}+15 q^{110}-11 q^{108}-q^{106}+12 q^{104}-22 q^{102}+25 q^{100}-18 q^{98}+3 q^{96}+10 q^{94}-23 q^{92}+20 q^{90}-11 q^{88}-7 q^{86}+17 q^{84}-21 q^{82}+10 q^{80}+5 q^{78}-21 q^{76}+28 q^{74}-25 q^{72}+12 q^{70}+4 q^{68}-20 q^{66}+31 q^{64}-29 q^{62}+22 q^{60}-5 q^{58}-8 q^{56}+22 q^{54}-24 q^{52}+20 q^{50}-5 q^{48}-6 q^{46}+19 q^{44}-16 q^{42}+7 q^{40}+12 q^{38}-21 q^{36}+25 q^{34}-14 q^{32}-2 q^{30}+17 q^{28}-24 q^{26}+24 q^{24}-13 q^{22}+2 q^{20}+7 q^{18}-13 q^{16}+10 q^{14}-7 q^{12}+3 q^{10}-2 q^6-q^2+1- q^{-2} + q^{-4}$