# 10 141 (KnotPlot image) See the full Rolfsen Knot Table. Visit 10 141's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10 141 at Knotilus!

### Knot presentations

 Planar diagram presentation X1425 X3,10,4,11 X14,6,15,5 X16,8,17,7 X6,16,7,15 X17,20,18,1 X11,18,12,19 X19,12,20,13 X8,14,9,13 X9,2,10,3 Gauss code -1, 10, -2, 1, 3, -5, 4, -9, -10, 2, -7, 8, 9, -3, 5, -4, -6, 7, -8, 6 Dowker-Thistlethwaite code 4 10 -14 -16 2 18 -8 -6 20 12 Conway Notation [4,21,21-]

### Three dimensional invariants

 Symmetry type Reversible Unknotting number 1 3-genus 3 Bridge index 3 Super bridge index Missing Nakanishi index 1 Maximal Thurston-Bennequin number [-7][-3] Hyperbolic Volume 7.93647 A-Polynomial See Data:10 141/A-polynomial

### Four dimensional invariants

 Smooth 4 genus $1$ Topological 4 genus $1$ Concordance genus $3$ Rasmussen s-Invariant 0

### Polynomial invariants

 Alexander polynomial $-t^3+3 t^2-4 t+5-4 t^{-1} +3 t^{-2} - t^{-3}$ Conway polynomial $-z^6-3 z^4-z^2+1$ 2nd Alexander ideal (db, data sources) $\{1\}$ Determinant and Signature { 21, 0 } Jones polynomial $q^2-2 q+3-3 q^{-1} +4 q^{-2} -3 q^{-3} +2 q^{-4} -2 q^{-5} + q^{-6}$ HOMFLY-PT polynomial (db, data sources) $-a^2 z^6+a^4 z^4-5 a^2 z^4+z^4+3 a^4 z^2-7 a^2 z^2+3 z^2+a^4-2 a^2+2$ Kauffman polynomial (db, data sources) $a^4 z^8+a^2 z^8+2 a^5 z^7+3 a^3 z^7+a z^7+a^6 z^6-3 a^4 z^6-4 a^2 z^6-9 a^5 z^5-12 a^3 z^5-3 a z^5-4 a^6 z^4+a^4 z^4+8 a^2 z^4+3 z^4+10 a^5 z^3+13 a^3 z^3+5 a z^3+2 z^3 a^{-1} +3 a^6 z^2-a^4 z^2-9 a^2 z^2+z^2 a^{-2} -4 z^2-2 a^5 z-4 a^3 z-3 a z-z a^{-1} +a^4+2 a^2+2$ The A2 invariant $q^{18}-q^{12}-q^{10}+q^8+q^4+ q^{-2} + q^{-6}$ The G2 invariant $q^{94}-q^{92}+2 q^{90}-3 q^{88}+q^{86}-q^{84}-2 q^{82}+6 q^{80}-7 q^{78}+6 q^{76}-2 q^{74}-3 q^{72}+6 q^{70}-5 q^{68}+4 q^{66}-3 q^{62}+7 q^{60}-q^{58}-2 q^{56}+4 q^{54}-8 q^{52}+7 q^{50}-7 q^{46}+3 q^{44}-4 q^{42}+9 q^{40}-4 q^{38}-2 q^{36}-q^{34}-3 q^{32}+7 q^{30}-6 q^{28}-q^{26}+q^{22}+5 q^{20}-3 q^{18}-3 q^{16}+5 q^{14}-5 q^{12}+4 q^{10}-6 q^6+8 q^4-3 q^2+2+2 q^{-2} -3 q^{-4} +2 q^{-6} - q^{-8} + q^{-10} +2 q^{-12} +2 q^{-18} +2 q^{-24} -2 q^{-26} + q^{-28} - q^{-30} - q^{-32} + q^{-34} - q^{-36} + q^{-38}$