10 104

From Knot Atlas
Jump to: navigation, search

10 103.gif

10_103

10 105.gif

10_105

Contents

10 104.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 104's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 104 at Knotilus!


Knot presentations

Planar diagram presentation X6271 X16,4,17,3 X18,9,19,10 X14,7,15,8 X20,13,1,14 X8,17,9,18 X10,19,11,20 X12,6,13,5 X4,12,5,11 X2,16,3,15
Gauss code 1, -10, 2, -9, 8, -1, 4, -6, 3, -7, 9, -8, 5, -4, 10, -2, 6, -3, 7, -5
Dowker-Thistlethwaite code 6 16 12 14 18 4 20 2 8 10
Conway Notation [3:20:20]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gif

Length is 10, width is 3,

Braid index is 3

10 104 ML.gif 10 104 AP.gif
[{5, 11}, {7, 12}, {8, 6}, {4, 7}, {3, 5}, {9, 4}, {10, 8}, {11, 9}, {2, 10}, {1, 3}, {12, 2}, {6, 1}]

[edit Notes on presentations of 10 104]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-6]
Hyperbolic Volume 14.1071
A-Polynomial See Data:10 104/A-polynomial

[edit Notes for 10 104's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus 1
Topological 4 genus 1
Concordance genus 4
Rasmussen s-Invariant 0

[edit Notes for 10 104's four dimensional invariants]

Polynomial invariants

Alexander polynomial t^4-4 t^3+9 t^2-15 t+19-15 t^{-1} +9 t^{-2} -4 t^{-3} + t^{-4}
Conway polynomial z^8+4 z^6+5 z^4+z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 77, 0 }
Jones polynomial -q^5+3 q^4-6 q^3+10 q^2-12 q+13-12 q^{-1} +10 q^{-2} -6 q^{-3} +3 q^{-4} - q^{-5}
HOMFLY-PT polynomial (db, data sources) z^8-a^2 z^6-z^6 a^{-2} +6 z^6-4 a^2 z^4-4 z^4 a^{-2} +13 z^4-5 a^2 z^2-5 z^2 a^{-2} +11 z^2-a^2- a^{-2} +3
Kauffman polynomial (db, data sources) 2 a z^9+2 z^9 a^{-1} +4 a^2 z^8+5 z^8 a^{-2} +9 z^8+4 a^3 z^7+2 a z^7+3 z^7 a^{-1} +5 z^7 a^{-3} +3 a^4 z^6-5 a^2 z^6-11 z^6 a^{-2} +3 z^6 a^{-4} -22 z^6+a^5 z^5-5 a^3 z^5-6 a z^5-12 z^5 a^{-1} -11 z^5 a^{-3} +z^5 a^{-5} -6 a^4 z^4+3 a^2 z^4+12 z^4 a^{-2} -6 z^4 a^{-4} +27 z^4-2 a^5 z^3-a^3 z^3+4 a z^3+13 z^3 a^{-1} +8 z^3 a^{-3} -2 z^3 a^{-5} +3 a^4 z^2-4 a^2 z^2-6 z^2 a^{-2} +2 z^2 a^{-4} -15 z^2+a^5 z+a^3 z-2 a z-4 z a^{-1} -2 z a^{-3} +a^2+ a^{-2} +3
The A2 invariant -q^{14}+q^{12}-2 q^{10}+2 q^8+q^6-q^4+3 q^2-3+3 q^{-2} - q^{-4} + q^{-6} +2 q^{-8} -2 q^{-10} + q^{-12} - q^{-14}
The G2 invariant q^{80}-2 q^{78}+5 q^{76}-8 q^{74}+8 q^{72}-6 q^{70}-2 q^{68}+16 q^{66}-29 q^{64}+41 q^{62}-43 q^{60}+30 q^{58}-6 q^{56}-36 q^{54}+82 q^{52}-118 q^{50}+121 q^{48}-87 q^{46}+9 q^{44}+85 q^{42}-164 q^{40}+201 q^{38}-162 q^{36}+66 q^{34}+57 q^{32}-157 q^{30}+181 q^{28}-122 q^{26}+15 q^{24}+99 q^{22}-156 q^{20}+131 q^{18}-27 q^{16}-104 q^{14}+206 q^{12}-236 q^{10}+168 q^8-34 q^6-123 q^4+244 q^2-286+243 q^{-2} -119 q^{-4} -35 q^{-6} +168 q^{-8} -234 q^{-10} +212 q^{-12} -111 q^{-14} -17 q^{-16} +126 q^{-18} -158 q^{-20} +111 q^{-22} - q^{-24} -113 q^{-26} +180 q^{-28} -166 q^{-30} +68 q^{-32} +57 q^{-34} -166 q^{-36} +212 q^{-38} -177 q^{-40} +91 q^{-42} +12 q^{-44} -99 q^{-46} +137 q^{-48} -128 q^{-50} +84 q^{-52} -29 q^{-54} -16 q^{-56} +40 q^{-58} -47 q^{-60} +40 q^{-62} -25 q^{-64} +12 q^{-66} + q^{-68} -7 q^{-70} +7 q^{-72} -7 q^{-74} +4 q^{-76} -2 q^{-78} + q^{-80}