Chapter 16
\# 27
Let F be a field and let

$$
I=\left\{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \mid a_{n}, a_{n-1}, \ldots, a_{0} \in F\right. \text { and }
$$

$$
\left.a_{n}+a_{n-1}+\cdots+a_{0}=0\right]
$$

Show that I is an ideal of $F[x]$ and find a generator for I.

Let $a(x)$ and $b(x) \in I$.

$$
\begin{aligned}
\Rightarrow & a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in I \\
& b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0} \in I \\
& a_{i}, b_{i} \in F \\
& a_{n}+a_{n-1}+\cdots+a_{0}=0 \\
& b_{n}+b_{n-1}+\cdots+b_{0}=0 \quad \text { by def } n \text { of I } . \\
\Rightarrow & a^{\prime}(x)-b(x)=\left(a_{n} x^{n}+\cdots+a_{0}\right)-\left(b_{n} x^{n}+\cdots+b_{0}\right) \\
= & \left(a_{n}-b_{n}\right) x^{n}+\left(a_{n-1}-b_{n-1}\right) x^{n-1}+\cdots+\left(a_{0}-b_{0}\right)
\end{aligned}
$$

since $a_{i}, b_{i} \in F \Rightarrow a_{c}-b_{i} \in F$

$$
\begin{aligned}
& \left(a_{n}-b_{n}\right)+\left(a_{n-1}-b_{n-1}\right)+\cdots+\left(a_{0}\right)+\underbrace{\left(a_{n}+a_{n-1}+\cdots\right)}_{0} \\
= & 0 \underbrace{}_{0})-(\underbrace{}_{0}+b_{0}+b_{n-1}+\cdots+b_{0}) \\
& 0-a(x)-b(x) \in I .
\end{aligned}
$$

Now let $r(x) \in F[x]$ and $a(x) \in I$ as above
$\Rightarrow a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0} \in I$
$a_{c} \in F$.

$$
a_{n}+a_{n-1}+\cdots+a_{0}=0
$$

$r(x)$: polynomial with coefficients in F. But, these coefficients may be different from $a_{n}+a_{n-1}+\cdots+a_{0}=0$, meaning sum of coefficients of $r(x)$ may rot be 0 .
must see if coefficients of $r(x) a(x)$ are sum to 0 .

$$
\begin{aligned}
& \therefore r(x) a(x) \\
&= r(x)\left[a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}\right] \\
&= r(x) a_{n} x^{n}+r(x) a_{n-1} x^{n-1}+\cdots+r(x) a_{0} \\
&= {\left[r_{m} x^{m}+r_{m-1}^{m} x^{m-1}+\cdots+r_{0}\right] a_{n} x^{n}+\cdots+\left[r_{m} x_{n}^{m}+\cdots+r_{0}\right] a_{0} } \\
&= r_{m} a_{n} x^{n} x^{m}+r_{m-1} a_{n} x^{n} x^{m-1}+\cdots+r_{0} a_{n} x^{n} \\
&+\cdots+r_{m} a_{0} x^{m}+\cdots+r_{0} a_{0}
\end{aligned}
$$

\Rightarrow coefficients of $r(x) a(x)$ are
$r_{m} a_{n}, r_{n-1} a_{n}, \ldots, r_{0} a_{n}$,
$r_{m} a_{n-1}, r_{m-1} a_{n-1}, \ldots, r_{0} a_{n-1}$,
$r_{m} a_{0} \ldots, r_{0} a_{0}$.

$$
\begin{aligned}
& \Rightarrow \sum_{i, n=0} r_{i} a_{3}=r_{m} a_{n}+r_{m} a_{n-1}+\cdots+r_{m} a_{0}+\cdots+r_{0} a_{0} \\
&=r_{m}\left(a_{n}+a_{n-1}+\cdots+a_{0}\right)+r_{m-1}\left(a_{n}+a_{n-1}+\cdots+a_{0}\right) \\
&+\cdots+r_{0}\left(a_{n}+a_{n-1}+\cdots+a_{0}\right)=r_{m}(0)+r_{m-1}(0) \\
&+\cdots+r_{0}(0)=0+\cdots+0=0 \\
& \therefore r(x) a(x) \in I
\end{aligned}
$$

$$
\begin{aligned}
& a(x) r(x)^{m} \\
= & a(x)\left[r_{m} x^{m}+r_{m-1} x^{m-1}+\cdots+r_{0}\right] \\
= & a(x) r_{m} x^{m}+a(x) r_{m-1} x^{m-1}+\cdots+a(x) r_{0} \\
= & \left(a_{n} x^{n}+a_{n-1} x^{n}+\cdots+a_{0}\right) r_{m} x^{m}+\cdots+\left(a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots a_{0}\right) r_{0} \\
= & a_{n} r_{m} x^{n} x^{m}+a_{n-1} r_{m} x^{n-1} x^{m}+\cdots+a_{0} r_{m} x^{m}+\cdots+ \\
& \cdots+a_{n} r_{0} x^{n}+\cdots+a_{0}+r_{0}
\end{aligned}
$$

\Rightarrow coefficients of $a(x) r(x)$ are
$a_{n} r_{m}, a_{n-1} r_{m}, \ldots, a_{n} r_{n}, \ldots, a_{0} r_{0}$
\Rightarrow Sum of coefficients are

$$
\begin{aligned}
& a_{n} r_{m}+a_{n-1} r_{m}+\cdots+a_{0} r_{m}+\cdots+a_{n} r_{0}+\cdots+a_{\Delta} r_{0} \\
= & r_{n}\left(a_{n}+a_{n-1}+\cdots+a_{0}\right)+\cdots+r_{0}\left(a_{n}+\cdots+a_{0}\right) \\
= & r_{m}(0)+\cdots+r_{0}(0)=0+\cdots+0=0 .
\end{aligned}
$$

Since

$$
\begin{aligned}
& a(x)-b(x) \in I, \\
& a(x) r(x) \in I \\
& r(x) a(x) \in \frac{I}{I}
\end{aligned}
$$

by Ideal test, $\frac{I}{I}$ is an ideal.
To find a generator for I, let $p(x)$ de generator of I.
By theorem 16.4, which states
tor F, a field, I a nonzero ideal in $F[x]$, and $g(x)$ an element of $F[x]$.
Then. $I=\langle g(x)\rangle$ if $g(x)$ is a nonzero polynomial of minimum degree in I.
In this case, minimum degree is 1.

$$
\therefore p(x)=a_{0} x+a_{0}
$$

bit $a_{1}+a_{0}=0$ by initial condition

$$
\begin{aligned}
& \Rightarrow a_{1}=-a_{0} \text { or } a_{0}=-a_{1} \\
& \therefore p(x)=a_{1} x-a_{1}=a_{1}(x-1) \\
& \Rightarrow p(x) \in\langle x-1\rangle \\
& \Rightarrow(x-1\rangle)=g(x) \\
& \Rightarrow I=\langle g(x)\rangle=\langle x-1\rangle \\
& \text { or } x-1 \text { is generator for I. }
\end{aligned}
$$

Chapter 16
\#31 For every prime p_{1} show that $x^{p-1}-1=(x-1)(x-2) \cdots[(x-(p-1))]$ in $Z_{p}[x]$ let $g(x)=x^{p-1}-1-(x-1)(x-2) \cdots[x-(p-1)]$.
corollary 3 states that a polynomial of degree n over a field has at most n zeros counting multiplicity.
$\Rightarrow g(x)$ can have at most $p-1$ Zeros.
by Fermat's little theorem
$a^{p-1} \equiv 1 \bmod p$ Then,
$1,2, \ldots, p-1$ are zeros for $[(x-1)(x-2) \cdots(x-(p-1))]$ since the theorem can be rewritten as $a^{p-1}-1 \equiv 0 \bmod p$.
$\therefore x^{p-1} \equiv 1 \bmod p$ by Fermat's theorem
$\Rightarrow x^{p-1}-1 \equiv 1-1$ mod $_{p-1} p$

$$
\begin{aligned}
\Rightarrow & \therefore g(x)=0 \text { for } x=1,2, \ldots,(p-1) \\
& \therefore g(x)=0 \text { in } Z_{p}[x] \\
\Rightarrow & 0=x^{p-1}-1-(x-1)(x-2) \cdots[x-(p-1)] \\
\Rightarrow & x^{p-1}-1=(x-1)(x-2) \cdots[x-(p-1)]
\end{aligned}
$$

Chapter 16
\#39. Let F be a field. \& let fig $\in F[x]$. If there is no polynomial of positive degree in $F[x]$ that divides both $f \& g$ Lin this case, f and g are sain to be relatively prime), prove that there exist polynomials $h(x)$ and $K\left(x^{\prime}\right)$ in $F[x]$ with property that $f(x) h(x)+g(x) K(x)=1$.
Since F is a field, $F[x]$ is a principal 1 ideal domain by The 16.3.
\Rightarrow every ideal has form $\langle a\rangle=$ era $\mid r \in R$.
\Rightarrow for $a \in F[x],\langle f, g\rangle=\langle a\rangle$
$\Rightarrow a \mid f$ and alg
but since f and g are relatively prime $a \neq 0$, and $a=b$ for some $b \in F$.

$$
\Rightarrow\left\langle f_{1} g\right\rangle=\langle b\rangle
$$

there must be some
c, $d \in F[x]$ such that

$$
\Rightarrow \quad \begin{aligned}
& f \cdot c+g \cdot d= \\
& \Rightarrow \\
& \quad \frac{f \cdot c}{b}+\frac{d}{b}=1
\end{aligned}
$$

\Rightarrow if $h=\frac{c}{b}, k=\frac{d}{b}$, then

$$
f h+g k=1
$$

or $f(x) \cdot h(x)+g(x) \cdot k(x)=1 \quad D$.

Chap 17
\#1 Suppose that $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in Z x$ If r is rational and $x-r$ divides $f(x)$, show that r is an integer.
Since $x-r$ divides $f(x), r$ is zero of $f(x)$ by Corollary 2 of chapkr 16 which skates that r is a zero of $f(x)$ if $x-r$ is a factor of $f(x)$.
since r is rational, let $r=\frac{m}{a}$ where
$2 / 2(m, p)=1$ and $m, p \in \mathbb{Z}^{a}$.

$$
f(r)=0=f\left(\frac{m}{p}\right)=\left(\frac{m}{p}\right)^{n}+a_{n-1}\left(\frac{m}{p}\right)^{n-1}+\cdots+\left(\frac{m}{p}\right) a_{1}+a
$$

multiplying both sides by p^{n}

$$
\begin{aligned}
0 & =m^{n}+a_{n-1} m^{n-1} p+\cdots+a_{1} m p^{n-1}+a_{0} p_{n}^{n} \\
& =m^{n}+p\left(a_{n-1} m_{n-1}^{n-1}+\cdots+a_{1} m^{n-2}+a_{0} p^{n-1}\right) \\
\Rightarrow \quad-m^{n} & =p\left(a_{n-1} m^{n-1}+\cdots+a_{1} m p^{n-2}+a_{0} p^{n-1}\right)
\end{aligned}
$$

$\Rightarrow p 1 m^{n}$ but by above, $(m, p)=1$

$$
\begin{aligned}
& \Rightarrow p= \pm 1 \\
& \Rightarrow r=\frac{m}{ \pm 1} \Rightarrow r= \pm m
\end{aligned}
$$

since $m \in \mathbb{Z}$

$$
r \in \mathbb{Z}
$$

$\therefore r$ is an integer.

