Abstract. Much as we can understand 3-dimensional objects by staring at their pictures and x-ray images and slices in 2dimensions, so can we understand 4-dimensional objects by staring at their pictures and x-ray images and slices in 3dimensions, capitalizing on the fact that we understand 3dimensions pretty well. So we will spend some time staring at and understanding various 2 -dimensional views of a 3dimensional elephant, and then even more simply, various 2dimensional views of some 3-dimensional knots. This achieved, we'll take the leap and visualize some 4 -dimensional knots by their various traces in 3-dimensional space, and if we'll still have time, we'll prove that these knots are really knotted.

छ

with Ester Dalvit $\omega /$ Dal

Formally, "a differentiable embedding of S^{1} in \mathbb{R}^{3} modulo differentiable deformations of such".
2-Knots / 4D Knots. Formally, "a differentiable embedding of S^{2} in \mathbb{R}^{4} modulo differentiable deformations of such".

Thistlethwaite's unknot

Scharein's relaxation

Haken's unknot Reidemeister's Theorem. (a) Every knot has a "broken curve diagram", made only of curves and "crossings" like 久.
(b) Two knot diagrams represent the same 3D knot iff they differ by a sequence of "Reidemester moves":

Topology is locally analysis and globally algebra 3-Colourings. Colour the arcs of a broken arc diagram in RGB so that every crossing is either mono-chromatic or tri-
 chromatic. Let $\lambda(K)$ be the number of such 3-colourings that K has.
Example. $\lambda(\bigcirc)=3$ while $\lambda(\mathfrak{G})=9$; so $\bigcirc \neq \mathfrak{G}$.
 Riddle. Is $\lambda(K)$ always a power of 3 ?
Proof sketch. It is enough to show that for each Reidemeister move, there is an end-colours-preserving bijection between the colourings of the two sides. E.g.:

"God created the knots, all else in topology is the work of mortals."

Leopold Kronecker (modified)

Theorem. Every 2-knot can be represented by a "broken surface diagram" made of the following basic ingredients,

\ldots and any two representations of the same knot differ by a sequence of the following "Roseman moves":

A Stronger Invariant. There is an assigment of groups to knots / 2-knots as follows. Put an arrow "under" every un-broken curve / surface in a broken curve / surface diagram and label it with the name of a group generator. Then mod out by relations as below.

Facts. The resulting "Fundamental group" $\pi_{1}(K)$ of a knot / 2knot K is a very strong but not very computable invariant of K. Though it has computable projections; e.g., for any finite G, count the homomorphisms from $\pi_{1}(K)$ to G.
Exercise. Show that $\left|\operatorname{Hom}\left(\pi_{1}(K) \rightarrow S_{3}\right)\right|=\lambda(K)+3$.
 Satoh's Conjecture. (Satoh,
Virtual Knot Presentations of
Ribbon Torus-Knots, J. Knot Theory and its Ramifications 9 (2000) 531-542). Two long wknot diagrams represent via the map δ the same simple long 2D knotted tube in 4D iff they differ Shin Satoh
 by a sequence of R-moves as above and the "w-moves" VR1-

Some knot theory books.

- Colin C. Adams, The Knot Book, an Elementary Introduction to the Mathematical Theory of Knots, American Mathematical Society, 2004.
- Meike Akveld and Andrew Jobbings, Knots Unravelled, from Strings to Mathematics, Arbelos 2011.
- J. Scott Carter and Masahico Saito, Knotted Surfaces and Their Diagrams, American Mathematical Society, 1997.
- Peter Cromwell, Knots and Links, Cambridge University Press, 2004.
- W.B. Raymond Lickorish, An Introduction to Knot Theory, Springer 1997.

GraduateTerts inlmatienatics we. Raymond Llckerien
An Introduction
to Knot Theory An Introduction
to Knot Theory

