Abstract. I will explain how the computation of compositions of maps of a certain natural class, from one polynomial ring into another, naturally leads to a certain composition operation of quadratics and to Feynman diagrams. Possibly in a later seminar I will explain how this technology can be used to construct a tangle invariant whose need was explained in a talk I gave in the topology seminar on Sep 16 ($\omega \varepsilon \beta /$ top).

Secret Slide (must not be shown). Il y a beaucoup de $Z:\{$ Noeuds $\} \rightarrow\left(\mathcal{U}(\mathfrak{g})\right.$ ou $\left.\mathcal{U}_{q}(\mathfrak{g})\right) \cong \mathcal{S}(\mathfrak{g}) \cong \mathbb{Q}\left[z_{1}, z_{2}, \ldots\right]$.
Conventions. 1. For a set A, let $z_{A}:=\left\{z_{i}\right\}_{i \in A}$ and let $\zeta_{A}:=\left\{z_{i}^{*}=\zeta_{i}\right\}_{i \in A}$. 2. Everything converges!
The Generating Series $\mathcal{D}: \operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right) \rightarrow \mathbb{Q} \llbracket \zeta_{A}, z_{B} \rrbracket$. Claim. $F \in \operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right) \underset{\mathcal{D}}{\sim} \mathbb{Q}\left[z_{B}\right] \llbracket \zeta_{A} \rrbracket \ni \mathcal{F}$ via

$$
\mathcal{D}(F):=\sum_{n \in \mathbb{N}^{A}} \frac{\zeta_{A}^{n}}{n!} F\left(z_{A}^{n}\right)=F\left(\mathbb{e}^{\sum_{a \in A} \zeta_{a} z_{a}}\right)=\mathcal{F},
$$

$$
\mathcal{D}^{-1}(\mathcal{F})(p)=\left(\left.p\right|_{z_{a} \rightarrow \partial_{\zeta a}} \mathcal{F}\right)_{\zeta_{a}=0} \quad \text { for } p \in \mathbb{Q}\left[z_{A}\right]
$$

Claim. If $F \in \operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right), G \in \operatorname{Hom}\left(\mathbb{Q}\left[z_{B}\right] \rightarrow\right.$ $\left.\mathbb{Q}\left[z_{C}\right]\right), \mathcal{F}=\mathcal{D}(F)$, and $\mathcal{G}=\mathcal{D}(G)$, then

$$
\mathcal{D}(F / / G)=\left(\left.\mathcal{F}\right|_{z_{b} \rightarrow \partial_{\zeta_{b}}} \mathcal{G}\right)_{\zeta_{b}=0}
$$

Basic Examples. 1. $\mathcal{D}(i d: \mathbb{Q}[y, a, x] \rightarrow \mathbb{Q}[y, a, x])=\mathbb{e}^{\eta y+\alpha a+\xi x}$.
2. The standard commutative product $m_{k}^{i j}$ of polynomials is given by $z_{i}, z_{j} \rightarrow z_{k}$. Hence $\mathcal{D}\left(m_{k}^{i j}\right)=$ $m_{k}^{i j}\left(\mathbb{e}^{\zeta_{i} z_{i}+\zeta_{j} z_{j}}\right)=\mathbb{e}^{\left(\zeta_{i}+\zeta_{j}\right) z_{k}}$.

3. The standard co-commutative coproduct $\Delta_{j k}^{i}$ of polynomials is given by $z_{i} \rightarrow z_{j}+z_{k}$. Hence $\mathcal{D}\left(\Delta_{j k}^{i}\right)=$ $\Delta_{j k}^{i}\left(\mathbb{e}^{\zeta_{i} z_{i}}\right)=\mathbb{e}^{\zeta_{i}\left(z_{j}+z_{k}\right)}$.
Heisenberg Algebras. Let $\mathbb{H}=\langle x, y\rangle /[x, y]=\hbar$ (with \hbar a scalar), let $\mathbb{O}_{i}: \mathbb{Q}\left[x_{i}, y_{i}\right] \rightarrow \mathbb{H}_{i}$ is the " x before y "PBW ordering map and let $h m_{k}^{i j}$ be the composition

$$
\mathbb{Q}\left[x_{i}, y_{i}, x_{j}, y_{j}\right] \xrightarrow{\mathbb{O}_{i} \otimes \mathbb{O}_{j}} \mathbb{H}_{i} \otimes \mathbb{H}_{j} \xrightarrow{m_{k}^{i j}} \mathbb{H}_{k} \xrightarrow{\mathbb{O}_{k}^{-1}} \mathbb{Q}\left[x_{k}, y_{k}\right] .
$$

Then $\mathcal{D}\left(h m_{k}^{i j}\right)=\mathbb{e}^{\Lambda_{\hbar}}$, where $\Lambda_{\hbar}=-\hbar \eta_{i} \xi_{j}+\left(\xi_{i}+\xi_{j}\right) x_{k}+\left(\eta_{i}+\eta_{j}\right) y_{k}$.
Proof 1. Recall the "Weyl form of the CCR" $\mathbb{e}^{\eta y} \mathbb{C}^{\xi x}=$ $\mathbb{e}^{-\hbar \eta \xi_{\mathbb{C}} \mathbb{e}^{\xi x} \mathbb{e}^{\eta y}}$, and compute

$$
\begin{aligned}
& \mathcal{D}\left(h m_{k}^{i j}\right)=\mathbb{e}^{\xi_{i} x_{i}+\eta_{i} y_{i}+\xi_{j} x_{j}+\eta_{j} y_{j}} / / \mathbb{O}_{i} \otimes \mathbb{O}_{j} / / m_{k}^{i j} / / \mathbb{O}_{k}^{-1} \\
& =\mathbb{e}^{\xi_{i} x_{i}} \mathbb{C}^{\eta_{i} y_{i}} \mathbb{C}^{\xi_{j} x_{j}} \mathbb{e}^{\eta_{j} y_{j}} / / m_{k}^{i j} / / \mathbb{O}_{k}^{-1}=\mathbb{e}^{\xi_{i} x_{k}} \mathbb{e}^{\eta_{i} y_{k}} \mathbb{C}^{\xi_{j} x_{k}} \mathbb{C}^{\eta_{j} y_{k}} / / \mathbb{O}_{k}^{-1} \\
& =\mathbb{e}^{-\hbar \eta_{i} \xi_{j}} \mathbb{C}^{\left(\xi_{i}+\xi_{j}\right) x_{k}} \mathbb{e}^{\left(\eta_{i}+\eta_{j}\right) y_{k}} / / \mathbb{O}_{k}^{-1}=\mathbb{e}^{\Lambda_{\hbar}} .
\end{aligned}
$$

Proof 2. We compute in a faithful 3D representation ρ of \mathbb{H} :
($\omega \varepsilon \beta / \mathrm{hm}$)
$\left\{\rho x=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \rho y=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & \hbar \\ 0 & 0 & 0\end{array}\right), \rho c=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\right\} ;$

\{True, True, True $\}$
$\Lambda=-\hbar \eta_{i} \xi_{j} \mathbf{c}_{\mathrm{k}}+\left(\xi_{i}+\xi_{j}\right) \mathbf{x}_{\mathrm{k}}+\left(\eta_{\mathrm{i}}+\eta_{\mathrm{j}}\right) \mathrm{y}_{\mathrm{k}}$;
Simplify@With $[\{\mathbb{E}=$ MatrixExp $\}$,
$\mathbb{E}\left[\xi_{i} \rho \mathbf{x}\right] \cdot \mathbb{E}\left[\eta_{i} \rho \mathbf{y}\right] \cdot \mathbb{E}\left[\xi_{j} \rho \mathbf{x}\right] \cdot \mathbb{E}\left[\eta_{j} \rho \mathbf{y}\right]==$ $\left.\mathbb{E}\left[\partial_{x_{k}} \Lambda \rho x\right] \cdot \mathbb{E}\left[\partial_{y_{k}} \Lambda \rho y\right] \cdot \mathbb{E}\left[\partial_{c_{k}} \Lambda \rho c\right]\right]$
True

A real DoPeGDO Example (DoPeGDO:=Docile Perturbed Gaussian Differential Operators). Let $s l_{2+}^{\epsilon}:=L\langle y, b, a, x\rangle$ subject to $[a, x]=x,[b, y]=-\epsilon y,[a, b]=0,[a, y]=-y,[b, x]=\epsilon x$, and $[x, y]=\epsilon a+b$. So $t:=\epsilon a-b$ is central and if $\exists \epsilon^{-1}$, $s l_{2+}^{\epsilon} /\langle t\rangle \cong s l_{2}$. Let $C U:=\mathcal{U}\left(s l_{2+}^{\epsilon}\right)$, and let $c m_{k}^{i j}$ be the composition below, where $\mathbb{O}_{i}: \mathbb{Q}\left[y_{i}, b_{i}, a_{i}, x_{i}\right] \rightarrow C U_{i}$ be the PBW ordering map in the order ybax:

$$
\begin{gathered}
C U_{i} \otimes C U_{j} \xrightarrow[m_{k}^{i j}]{\uparrow_{O_{i, j}}} C U_{k} \\
\mathbb{Q}\left[y_{i}, b_{i}, a_{i}, x_{i}, y_{j}, b_{j}, a_{j}, x_{j}\right] \xrightarrow{c m_{k}^{i j}} \mathbb{Q}\left[y_{k}, b_{k}, a_{k}, x_{k}\right]
\end{gathered}
$$

Claim. Let

$$
\begin{array}{r}
\Lambda=\left(\eta_{i}+\frac{e^{-\alpha_{i}-\epsilon \beta_{i}} \eta_{j}}{1+\epsilon \eta_{j} \xi_{i}}\right) y_{k}+\left(\beta_{i}+\beta_{j}+\frac{\log \left(1+\epsilon \eta_{j} \xi_{i}\right)}{\epsilon}\right) b_{k}+ \\
\quad\left(\alpha_{i}+\alpha_{j}+\log \left(1+\epsilon \eta_{j} \xi_{i}\right)\right) a_{k}+\left(\frac{e^{-\alpha_{j}-\epsilon \beta_{j}} \xi_{i}}{1+\epsilon \eta_{j} \xi_{i}}+\xi_{j}\right) x_{k}
\end{array}
$$

Then $\mathbb{e}^{\eta_{i} y_{i}+\beta_{i} b_{i}+\alpha_{i} a_{i}+\xi_{i} x_{i}+\eta_{j} y_{j}+\beta_{j} b_{j}+\alpha_{j} a_{j}+\xi_{j} x_{j}} / / \mathbb{O}_{i, j} / / \operatorname{cm}_{k}^{i j}=\mathbb{e}^{\Lambda} / / \mathbb{O}_{k}$, and hence $\mathcal{D}\left(c m_{k}^{i j}\right)=\mathbb{e}^{\Lambda}$.
Proof. We compute in a faithful 2D representation ρ of $C U$:
($\omega \varepsilon \beta / \mathrm{cm}$)
$\left\{\rho \mathbf{y}=\left(\begin{array}{ll}0 & 0 \\ \epsilon & 0\end{array}\right), \rho \mathbf{b}=\left(\begin{array}{cc}0 & 0 \\ 0 & -\epsilon\end{array}\right), \rho \mathbf{a}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), \rho \mathrm{x}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right\}$;
$\{\rho a . \rho \mathrm{x}-\rho \mathrm{x} . \rho \mathrm{a}=\rho \mathrm{x}, \rho \mathrm{a} . \rho \mathrm{y}-\rho \mathrm{y} . \rho \mathrm{a}=-\rho \mathrm{y}$,
$\rho \mathbf{b} . \rho \mathbf{y}-\rho \mathbf{y} . \rho \mathbf{b}=-\epsilon \rho \mathbf{y}, \rho \mathbf{b} . \rho \mathbf{x}-\rho \mathbf{x} . \rho \mathbf{b}=\epsilon \rho \mathbf{x}$,
$\rho \mathbf{x} . \rho \mathbf{y}-\rho \mathbf{y} . \rho \mathbf{x}=\rho \mathbf{b}+\epsilon \rho \mathbf{a}\}$
\{True, True, True, True, True\}
Simplify@With $[\{\mathbb{E}=$ MatrixExp $\}$,
$\mathbb{E}\left[\eta_{i} \rho \mathbf{y}\right] \cdot \mathbb{E}\left[\beta_{i} \rho \mathbf{b}\right] \cdot \mathbb{E}\left[\alpha_{i} \rho a\right] \cdot \mathbb{E}\left[\xi_{i} \rho \mathbf{x}\right] \cdot \mathbb{E}\left[\eta_{j} \rho \mathbf{y}\right] \cdot \mathbb{E}\left[\beta_{j} \rho b\right]$.
$\mathbb{E}\left[\alpha_{\mathrm{j}} \rho \mathbf{a}\right] \cdot \mathbb{E}\left[\xi_{\mathrm{j}} \rho \mathbf{x}\right]=$
$\left.\mathbb{E}\left[\partial_{y_{k}} \Lambda \rho \mathrm{y}\right] \cdot \mathbb{E}\left[\partial_{\mathrm{b}_{\mathrm{k}}} \Lambda \rho \mathrm{b}\right] \cdot \mathbb{E}\left[\partial_{\mathrm{a}_{\mathrm{k}}} \Lambda \rho \mathrm{a}\right] \cdot \mathbb{E}\left[\partial_{\mathrm{x}_{\mathrm{k}}} \Lambda \rho \mathrm{x}\right]\right]$
True
Series [$\Lambda,\{\epsilon, 0,2\}]$
$\left(a_{k}\left(\alpha_{i}+\alpha_{j}\right)+y_{k}\left(\eta_{i}+\mathbb{e}^{-\alpha_{i}} \eta_{j}\right)+\right.$
$\left.\mathbf{b}_{\mathrm{k}}\left(\beta_{\mathbf{i}}+\beta_{\mathrm{j}}+\eta_{\mathbf{j}} \xi_{i}\right)+\mathbf{x}_{\mathrm{k}}\left(\mathrm{e}^{-\alpha_{\mathbf{j}}} \xi_{i}+\xi_{j}\right)\right)+$
$\left(a_{k} \eta_{j} \xi_{i}-\frac{1}{2} b_{k} \eta_{j}^{2} \xi_{i}^{2}-e^{-\alpha_{i}} y_{k} \eta_{j}\left(\beta_{i}+\eta_{j} \xi_{i}\right)-\right.$
$\left.e^{-\alpha_{j}} \mathrm{x}_{\mathrm{k}} \xi_{\mathrm{i}}\left(\beta_{\mathrm{j}}+\eta_{\mathrm{j}} \xi_{\mathrm{i}}\right)\right) \in+$
$\left(-\frac{1}{2} \mathrm{a}_{\mathrm{k}} \eta_{\mathrm{j}}^{2} \xi_{i}^{2}+\frac{1}{3} \mathrm{~b}_{\mathrm{k}} \eta_{\mathrm{j}}^{3} \xi_{i}^{3}+\frac{1}{2} e^{-\alpha_{i}} \mathbf{y}_{\mathrm{k}} \eta_{\mathrm{j}}\left(\beta_{\mathrm{i}}^{2}+2 \beta_{\mathrm{i}} \eta_{\mathrm{j}} \xi_{\mathrm{i}}+2 \eta_{\mathrm{j}}^{2} \xi_{\mathrm{i}}^{2}\right)+\right.$ $\left.\frac{1}{2} \mathbb{e}^{-\alpha_{j}} \mathrm{x}_{\mathrm{k}} \xi_{\mathrm{i}}\left(\beta_{\mathrm{j}}^{2}+2 \beta_{\mathrm{j}} \eta_{\mathrm{j}} \xi_{\mathrm{i}}+2 \eta_{\mathrm{j}}^{2} \xi_{\mathrm{i}}^{2}\right)\right) \epsilon^{2}+0[\epsilon]^{3}$

Note 1. If the lower half of the alphabet (a, b, α, β) is regarded as constants, then $\Lambda=C+Q+\sum_{k \geq 1} \epsilon^{k} P^{(k)}$ is a docile perturbed Gaussian relative to the upper half of the alphabet $(x, y, \xi, \eta): C$ is a scalar, Q is a quadratic, and $\operatorname{deg} P^{(k)} \leq 2 k+2$.
Note 2. $\mathrm{wt}(x, y, \xi, \eta, a, b, \alpha, \beta, \epsilon)=(1,1,1,1,2,0,0,2,-2)$.
Quadratic Casimirs. If $t \in \mathfrak{g} \otimes \mathfrak{g}$ is the quadratic Casimir of a semi-simple Lie algebra \mathfrak{g}, then \mathbb{e}^{t}, regarded by PBW as an element of $\mathcal{S}^{\otimes 2}=\operatorname{Hom}\left(\mathcal{S}(\mathfrak{g})^{\otimes 0} \rightarrow \mathcal{S}(\mathfrak{g})^{\otimes 2}\right)$, has a latin-latin dominant Gaussian factor. Likewise for R-matrices.
DoPeGDO := The category with objects finite sets ${ }^{\dagger 1}$ and $\operatorname{mor}(A \rightarrow B)=\{\mathcal{F}=\omega \exp (Q+P)\} \subset \mathbb{Q} \llbracket \zeta_{A}, z_{B}, \epsilon \rrbracket$,
where: • ω is a scalar. ${ }^{\dagger 2} \bullet Q$ is a "small" ϵ-free quadratic in $\zeta_{A} \cup z_{B} .^{\dagger 3} \bullet P$ is a "docile perturbation": $P=\sum_{k \geq 1} \epsilon^{k} P^{(k)}$, where $\operatorname{deg} P^{(k)} \leq 2 k+2 .^{\dagger 4} \bullet$ Compositions: ${ }^{\dagger 6}$

$$
\mathcal{F} / / \mathcal{G}=\mathcal{G} \circ \mathcal{F}:=\left(\left.\mathcal{G}\right|_{\zeta_{i} \rightarrow \partial_{z_{i}}} \mathcal{F}\right)_{z_{i}=0}=\left(\left.\mathcal{F}\right|_{z_{i} \rightarrow \partial_{\zeta_{i}} \mathcal{G}}\right)_{\zeta_{i}=0}
$$

So What? - If V is a representation, then $V^{\otimes n}$ explodes as a function of n, while in DoPeGDO and up to a fixed power of ϵ, the ranks of $\operatorname{mor}(A \rightarrow B)$ grow polynomially as a function of $|A|$ and $|B|$.

- Approximating $s l_{2+}^{\epsilon}$ retains more of its structure then representing it!

Compositions (1). In mor $(A \rightarrow B)$,

$$
Q=\sum_{i \in A, j \in B} E_{i j} \zeta_{i} z_{j}+\frac{1}{2} \sum_{i, j \in A} F_{i j} \zeta_{i} \zeta_{j}+\frac{1}{2} \sum_{i, j \in B} G_{i j} z_{i} z_{j}
$$

and so

where $\bullet E=E_{1}\left(I-F_{2} G_{1}\right)^{-1} E_{2}$.

- $F=F_{1}+E_{1} F_{2}\left(I-G_{1} F_{2}\right)^{-1} E_{1}^{T}$.
- $G=G_{2}+E_{2}^{T} G_{1}\left(I-F_{2} G_{1}\right)^{-1} E_{2}$.
- $\omega=\omega_{1} \omega_{2} \operatorname{det}\left(I-F_{2} G_{1}\right)^{-1}$.
- P is computed as the solution of a messy PDE or using "connected Feynman diagrams" (yet we're still in alge-
 bra!).

DoPeGDO Footnotes. Each variable has a "weight" $\in\{0,1,2\}$, and always $\mathrm{wt} z_{i}+\mathrm{wt} \zeta_{i}=2$.
\dagger 1. Really, "weight-graded finite sets" $A=A_{0} \sqcup A_{1} \sqcup A_{2}$.
\dagger 2. Really, a power series in the weight- 0 variables ${ }^{\dagger 5}$.
\dagger 3. The weight of Q must be 2 , so it decomposes as $Q=$ $Q_{20}+Q_{11}$. The coefficients of Q_{20} are rational numbers while the coefficients of Q_{11} may be weight-0 power series ${ }^{\dagger 5}$.
\dagger 4. Setting wt $\epsilon=-2$, the weight of P is ≤ 2 (so the powers of the weight- 0 variables are not constrained $)^{\dagger 5}$.
$\dagger 5$. In the knot-theoretic case, all weight- 0 power series are rational functions of bounded degree in the exponentials of the weight- 0 variables.
$\dagger 6$. There's also an obvious product
$\operatorname{mor}\left(A_{1} \rightarrow B_{1}\right) \times \operatorname{mor}\left(A_{2} \rightarrow B_{2}\right) \rightarrow \operatorname{mor}\left(A_{1} \sqcup A_{2} \rightarrow B_{1} \sqcup B_{2}\right)$.
Full DoPeGDO. Compute compositions in two phases:

- A 2-0 phase over \mathbb{Q}, in which the weight-1 variables are spectators.
- A 1-1 phase over the ring of power series in the weight-0 variables, in which the weight-
 2 variables are spectators.

Questions. - Are there QFT precedents for "two-step Gaussian integration"?

- In QFT, one saves even more by considering "one-particleirreducible" diagrams and "effective actions". Does this mean anything here?
- Understanding $\operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right)$ seems like a good cause. Can you find other applications for the technology here?

Compositions (2). Recall that with all indices i running in some set B,

$$
\mathcal{F} / / G=\left(\left.\mathcal{F}\right|_{z_{i} \rightarrow \partial_{\zeta_{i}}} G\right)_{\zeta_{i}=0} \stackrel{(1)}{=} \mathbb{e}^{\left.\sum \partial_{z_{i}} \partial_{\zeta_{i}}(\mathcal{F} G)\right|_{z_{i}=\zeta_{i}=0}, \quad \begin{array}{l}
\text { (1) Strictly speaking, } \\
\text { true only when } \\
B \cap(A \cup C)=\emptyset
\end{array}, ~}
$$

so in general we wish to understand
$[F: \mathcal{E}]_{B}:=\mathbb{e}^{\frac{1}{2} \sum_{i, j \in B} F_{i j} \partial_{z_{i}} \partial_{z_{j}}} \mathcal{E} \quad$ and $\quad\langle F: \mathcal{E}\rangle_{B}:=\left.[F: \mathcal{E}]_{B}\right|_{z_{B} \rightarrow 0}$, where \mathcal{E} is a docile perturbed Gaussian. The following lemma allows us to restrict to the case where \mathcal{E} has no $B-B$ quadratic part:
Lemma 1. With convergences left to the reader,
$\left\langle F: \mathcal{E} \mathbb{e}^{\frac{1}{2} \sum_{i, j \in B} G_{i j} z_{i} z_{j}}\right\rangle_{B}=\operatorname{det}(1-G F)^{-1 / 2}\left\langle F(1-G F)^{-1}: \mathcal{E}\right\rangle_{B}$. The next lemma dispatches the case where \mathcal{E} has a B-linear part: Lemma 2. $\left\langle F: \mathcal{E} \mathbb{e}^{\sum_{i \in B} y_{i} z_{i}}\right\rangle_{B}=\mathbb{e}^{\frac{1}{2} \sum_{i, j \in B} F_{i j} y_{i} y_{j}}\left\langle F:\left.\mathcal{E}\right|_{z_{B} \rightarrow z_{B}+F y_{B}}\right\rangle_{B}$. Finally, we deal with the docile perturbation case:
Lemma 3. With an extra variable $\lambda, Z_{\lambda}:=\log \left[\lambda F: \mathbb{e}^{P}\right]_{B}$ satisfies and is determined by the following PDE / IVP:

$$
Z_{0}=P \quad \text { and } \quad \partial_{\lambda} Z_{\lambda}=\frac{1}{2} \sum_{i, j \in B} F_{i j}\left(\partial_{z_{i}} \partial_{z_{j}} Z_{\lambda}+\left(\partial_{z_{i}} Z_{\lambda}\right)\left(\partial_{z_{j}} Z_{\lambda}\right)\right)
$$

