Proof of the Tangle Characterization of Ribbon Knots

$$
\left(\begin{array}{c}
\text { toggle has } 2 n \\
\text { stands, } \\
n=2
\end{array}\right)
$$

Theorem. A knot K is ribbon iff there exists a tangle T whose τ closure is the untangle and whose K closure is K.

Proof. The backward \Longleftarrow implication is easy:

For the forward implication, follow the following 5 steps:

Step I: In-situ cosmetics.
At end: D is a tree of chord-and-arc polygons.

Step 2: Near-situ cosmetics.
At end: D is tree-band-sum of n unknotted disks.

Step 3: Slides.
At end: D is a linear-band-sum of n unknotted disks.

Step 4: Exposure!
The green domain is contractible - so it can be shrank, moved at will (with the blue membrane following along), and expanded back again.
At end: D has ($n-1$) exposed bridges which when turned, make D a union of n unknotted disks.

Step 5: Pulling bottom handles avoiding the obstacles.
At end: Theorem is proven.

$$
5-20
$$

