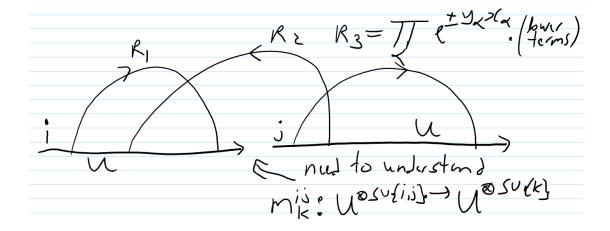
Dror Bar-Natan: Talks: Sydney-1708:

The Dogma is Wrong - Extra Details

Goal



Agenda

- **1.** Quantizing and de-quantizing sl_2^{ϵ} .
- **2.** Some understanding of sl_2^{ϵ} .
- **3.** A full understanding of sl_2^{ϵ} at $\epsilon = 0$.
- **4.** A full understanding of sl_2^{ϵ} at $\epsilon^2 = 0$.
- **5.** Pushforwards of distributions, 0-dimensional QFT, Feynman diagrams and what had really happened here.

Some Shortcuts

 $ME[x_{-}] := MatrixExp[x]; MB[x_{-}, y_{-}] := x.y-y.x; MF[x_{-}] := MatrixForm[x];$

Representing $g^{\epsilon} = \langle h, e, l, f \rangle / ([e, l] = -e, [f, l] = f, [e, f] = h - 2 \epsilon l, [h, *] = 0)$

$$\rho h = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}; \quad \rho e = \begin{pmatrix} 0 & 0 \\ -\epsilon & 0 \end{pmatrix}; \quad \rho l = \begin{pmatrix} -\begin{pmatrix} 1+1/\epsilon \end{pmatrix}/2 & 0 \\ 0 & \begin{pmatrix} 1-1/\epsilon \end{pmatrix}/2 \end{pmatrix}; \quad \rho f = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix};$$

$$Simplify@\{MB[\rho e, \rho l] = -\rho e, \quad MB[\rho f, \rho l] = \rho f, \quad MB[\rho e, \rho f] = \rho h - 2 \epsilon \rho l\}$$

The Main $g_0 := g^{\epsilon}/(\epsilon = 0)$ Theorem.

The g_0 invariant of any S-component tangle T can be written in the form $Z(T) = \mathbb{O}(\omega e^{L+Q} \mid \prod_{i \in S} e_i \, l_i \, f_i)$, where ω is a scalar (meaning, a rational function in the variables h_i and their exponentials $t_i = e^{h_i}$), where $L = \sum a_{ij} \, h_i \, l_j$ is a balanced quadratic in the variables h_i and l_j with integer coefficients a_{ij} and where $Q = \sum b_{ij} \, e_i \, f_j$ is a balanced quadratic in the variables e_i and f_j with scalar coefficients b_{ij} . Furthermore, after setting $h_i = h$ and $t_j = t$ for all i, the invariant Z(T) is poly-time computable.

Proof. Indeed, as we shall see, the following lemmas hold, and the rest is straight-forward.

Lemma 0.
$$R^s = e^{s(h \otimes l + e \otimes f)} = \mathbb{O}(\exp(s \operatorname{hl} + \frac{e^{sh} - 1}{h} \operatorname{ef} \mid e \otimes \operatorname{lf}).$$

Lemma 1.
$$\mathbb{O}(e^{\gamma l + \beta e} \mid le) = \mathbb{O}(e^{\gamma l + e^{\gamma} \beta e} \mid el)$$
.

Lemma 2.
$$\mathbb{O}(e^{\gamma l + \beta f} \mid fl) = \mathbb{O}(e^{\gamma l + e^{\gamma} \beta f} \mid fl)$$

Lemma 3.
$$\mathbb{O}(e^{\beta e + \alpha f + \delta e f} \mid fe) = \mathbb{O}(v e^{v(-\alpha \beta h + \beta e + \alpha f + \delta e f)} \mid e f)$$
, with $v = (1 + h\delta)^{-1}$.

Some g^{ϵ} lemmas

Lemma 1.
$$\mathbb{O}(e^{\gamma I + \beta e} \mid Ie) = \mathbb{O}(e^{\gamma I + e^{\gamma} \beta e} \mid eI)$$
.
Lemma 2. $\mathbb{O}(e^{\gamma I + \beta f} \mid fI) = \mathbb{O}(e^{\gamma I + e^{\gamma} \beta f} \mid If)$.

Proofs.

Derivation.

$$\begin{split} & \text{ME}\left[\alpha\,\rho\text{f}\right].\text{ME}\left[\beta\,\rho\text{e}\right] \;\; //\;\; \text{Simplify} \;\; //\;\; \text{MF} \\ & \text{eqn} = \text{ME}\left[\alpha\,\rho\text{f}\right].\text{ME}\left[\beta\,\rho\text{e}\right] \; = \; \text{ME}\left[a\,\rho\text{e}\right].\text{ME}\left[c\,\left(\rho\text{h}-2\,\epsilon\,\rho\text{l}\right)\right].\text{ME}\left[b\,\rho\text{f}\right] \\ & \text{sol} = \text{Solve}\left[\text{Thread}\left[\text{Flatten}\,/\,\text{@eqn}\right], \; \{a,b,c\}\right] \text{[1]} \\ & \text{sol} = \text{sol}\,\, /.\;\; \text{C[1]} \to 0 \end{split}$$

Lemma 3 for g₀.

$$\begin{aligned} & \text{Limit}[\{a,\mathbf{b},\mathbf{c}\} \text{ /. sol, } \epsilon \rightarrow \mathbf{0}] \\ & \text{And so in } g_0, \, \mathbb{O}(e^{\alpha f + \beta e} \mid f \, e) = \mathbb{O}(e^{\alpha f + \beta e - \alpha \beta h} \mid e \, l f). \, \text{Hence} \\ & \mathbb{O}(e^{\alpha f + \beta e + \delta e f} \mid f \, e) = e^{\delta \partial_{\alpha} \partial_{\beta}} \, \mathbb{O}(e^{\alpha f + \beta e} \mid f \, e) = e^{\delta \partial_{\alpha} \partial_{\beta}} \, \mathbb{O}(e^{\alpha f + \beta e - \alpha \beta h} \mid e \, l f) = \mathbb{O}(\psi \mid e \, l f), \, \text{where} \\ & \psi = e^{\delta \partial_{\alpha} \partial_{\beta}} \, e^{\alpha f + \beta e - \alpha \beta h} \, \text{satisfies } \psi_{\delta = 0} = e^{\alpha f + \beta e - \alpha \beta h} \, \text{and } \partial_{\delta} \, \psi = \partial_{\alpha,\beta} \, \psi. \end{aligned}$$

$$& \text{With} \left[\left\{ \psi = \nu \, e^{\nu \, (\delta \, e \, f \, - \, \alpha \, \beta \, h \, + \, \alpha \, f \, + \, \beta \, e)} \, \right. \, / \cdot \, \nu \rightarrow \left(\mathbf{1} + \delta \, \mathbf{h} \right)^{-1} \right\}, \, \text{Simplify} \, @ \left\{ \partial_{\delta} \, \psi \, - \, \partial_{\alpha,\beta} \, \psi, \, \psi \, / \cdot \, \delta \rightarrow \mathbf{0} \right\} \right]$$

A Lemma 3 for $g_k := g^{\epsilon}/(\epsilon^{k+1} = 0)$.

Lemma 3_k. $\mathbb{O}(e^{\beta e + \alpha f + \delta e f} \mid f e) = \mathbb{O}(v e^{v(-\alpha \beta h + \beta e + \alpha f + \delta e f)} \land_k(\epsilon, e, l, f, \alpha, \beta, \delta) \mid e f)$, with $v = (1 + h \delta)^{-1}$ and where for any fixed k, $\land_k(\epsilon, e, l, f, \alpha, \beta, \delta)$ is a fixed polynomial of degree at most 4k in e, \sqrt{l} , f, α , β , with scalar coefficients.

Comment. Even better, $\log(\Lambda_k)$ is of degree at most 2k + 2 in said variables.

Comment. And hence the g_k invariant is computable in polynomial time.

```
Proof of Lemma 3<sub>k</sub>. We know that \mathbb{O}(e^{\alpha f + \beta e} \mid f e) = \mathbb{O}(e^{ch + ae - 2 \epsilon cl + bf} \mid e/f), with
\Big\{a \to -\frac{\beta}{-1+\alpha\beta\,\epsilon}, \ b \to -\frac{\alpha}{-1+\alpha\beta\,\epsilon}, \ c \to \frac{\log[1-\alpha\beta\,\epsilon]}{\epsilon}\Big\}. \ \text{Expanding in } \epsilon \text{ we get}
\mathbb{O}(e^{\alpha f + \beta e} \mid f e) = \mathbb{O}(\lambda_{\epsilon}(\alpha, \beta) e^{\alpha f + \beta e - \alpha \beta h}) = \mathbb{O}(\lambda_{\epsilon}(\partial_f, \partial_e) e^{\alpha f + \beta e - \alpha \beta h} \mid e \mid f) \text{ and so}
\mathbb{O}(e^{\alpha f + \beta e + \delta e f} \mid f e) = \mathbb{O}(\lambda_{\epsilon}(\partial_f, \partial_e) e^{\delta \partial_{\alpha} \partial_{\beta}} e^{\alpha f + \beta e - \alpha \beta h} \mid e \mid f) = \mathbb{O}(\lambda_{\epsilon}(\partial_f, \partial_e) \vee e^{\vee (-\alpha \beta h + \beta e + \alpha f + \delta e f)} \mid e \mid f).
\mathsf{DP}_{\alpha_{-}\to\mathsf{D}_f}, \beta_{-}\to\mathsf{D}_e [P_{-}] [\lambda_{-}] :=
   Total[CoefficientRules [P, \{\alpha, \beta\}] /. (\{m_-, n_-\} \rightarrow c_-) \Rightarrow c D[\lambda, \{f, m\}, \{e, n\}]]
 (* "D" for Detailed *)
D\Lambda_k [h_{-}, e_{-}, l_{-}, f_{-}, \alpha_{-}, \beta_{-}, \delta_{-}] := Module
          \{\rho h, \rho e, \rho l, \rho f, eqn, a, b, c, sol, \lambda, q, v\},\
          \rho h = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}; \quad \rho e = \begin{pmatrix} 0 & 0 \\ -\epsilon & 0 \end{pmatrix}; \quad \rho 1 = \begin{pmatrix} -\begin{pmatrix} 1+1/\epsilon \end{pmatrix}/2 & 0 \\ 0 & \begin{pmatrix} 1-1/\epsilon \end{pmatrix}/2 \end{pmatrix}; \quad \rho f = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix};
          eqn = ME[\alpha \rho f].ME[\beta \rho e] == ME[a \rho e].ME[c (\rho h - 2 \epsilon \rho l)].ME[b \rho f];
          sol = Solve[Thread[Flatten / @ eqn], {a, b, c}][1] /. C[1] \rightarrow 0;
          \lambda = \mathsf{Simplify} \left[ \mathbf{e}^{-f \, \alpha - e \, \beta + h \, \alpha \, \beta} \, \mathsf{Normal@Series} \left[ \mathbf{e}^{\mathsf{c} \, h + a \, e \, - \, 2 \, \varepsilon \, \mathsf{c} \, l \, + \, \mathsf{b} \, f} \, / . \, \, \mathsf{sol}, \, \, \{ \varepsilon, \, \emptyset, \, k \} \, \right] \right];
          \mathbf{q} = \mathbf{e}^{\mathbf{v}} (f \alpha + e \beta - \bar{h} \alpha \beta + e f \delta);
          Collect [q^{-1} DP_{\alpha \to D_{\epsilon}, \beta \to D_{\epsilon}}[\lambda][q] /. v \to (1 + h \delta)^{-1}, \epsilon, Simplify]
       ];
D\Lambda_1[h, e, 1, f, \alpha, \beta, \delta]
D\Lambda_2 [h, e, 1, f, \alpha, \beta, \delta]
\Lambda_k [h_{-}, e_{-}, l_{-}, f_{-}, \alpha_{-}, \beta_{-}, \delta_{-}] := \Lambda_k[h, e, l, f, \alpha, \beta, \delta] = Module[{\lambda}, \delta_{-}]
             \lambda = \text{Normal@Series} \left[ e^{\frac{f \cdot \alpha + \beta}{1 - \alpha \beta \epsilon}} \left( \mathbf{1} - \alpha \beta \epsilon \right)^{-2 \cdot l + \frac{h}{\epsilon}}, \left\{ \epsilon, 0, k \right\} \right] / \cdot e^{-} \rightarrow \mathbf{1};
\text{Collect} \left[ DP_{\alpha \rightarrow D_f, \beta \rightarrow D_e} \left[ \lambda \right] \left[ e^{\left( f \cdot \alpha + \epsilon \cdot \beta + \epsilon \cdot f \cdot \delta \right) / \left( \mathbf{1} + h \cdot \delta \right)} \right] / \cdot e^{-} \rightarrow \mathbf{1}, \epsilon, \text{Simplify} \right] \right];
Simplify [D\Lambda_2[h, e, 1, f, \alpha, \beta, \delta] == \Lambda_2[h, e, 1, f, \alpha, \beta, \delta]]
```

The Main g_k Theorem

The g_k invariant of any S-component tangle T can be written in the form $Z(T) = \mathbb{O}(\omega e^{L+Q+P} \mid \prod_{i \in S} e_i \, l_i \, f_i)$, where ω is a scalar (meaning, a rational function in the variables h_i and their exponentials $t_i = e^{h_i}$), where $L = \sum a_{ij} \, h_i \, l_j$ is a balanced quadratic in the variables h_i and l_j with integer coefficients a_{ij} , where $Q = \sum b_{ij} \, e_i \, f_j$ is a balanced quadratic in the variables e_i and f_j with scalar coefficients b_{ij} , and where P is a polynomial in $\{\epsilon, e_i, l_i, f_i\}$ (with scalar coefficients) whose ϵ^d -term is of degree at most 2d + 2 in

 $\{e_i, \sqrt{I_i}, f_i\}$. Furthermore, after setting $h_i = h$ and $t_i = t$ for all i, the invariant Z(T) is poly-time computable.

Partial Proof. Indeed,

- 0. $R^{\pm} = ?$, $n^{\pm} = ?$.
- 1. $\mathbb{O}(\mathcal{P}(I, e) e^{\gamma I + \beta e} \mid Ie) = \mathbb{O}(\mathcal{P}(\partial_{\gamma}, \partial_{\beta}) e^{\gamma I + e^{\gamma} \beta e} \mid eI),$
- 2. $\mathbb{O}(\mathcal{P}(I, f) e^{\gamma I + \beta f} \mid f \mid) = \mathbb{O}(\mathcal{P}(\partial_{\gamma}, \partial_{\beta}) e^{\gamma I + e^{\gamma} \beta f} \mid I f),$
- 3. $\mathbb{O}(\mathcal{P}(e, f) e^{\beta e + \alpha f + \delta e f} \mid f e) = \mathbb{O}(v \mathcal{P}(\partial_{\beta}, \partial_{\alpha}) e^{v(-\alpha \beta h + \beta e + \alpha f + \delta e f)} \Lambda_{k}(\epsilon, e, l, f, \alpha, \beta, \delta) \mid e f)$, with $v = (1 + h\delta)^{-1}$, and $\Lambda_{k}(\epsilon, e, l, f, \alpha, \beta, \delta)$ as above.

Pushforwards of distributions, 0-dimensional QFT, Feynman diagrams and what had really happened here.