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Dror Bar-Natan: Talks: Sydney-1708: Nobody Solves the Quintic
Abstract. Everybody knows that nobody can solve the quintic.
Indeed this insolubility is a well known hard theorem, the high
point of a full-semester course on Galois theory, often taken in
one’s 3rd or 4th year of university mathematics. I’m not sure
why so few know that the same theorem can be proven in about
15 minutes using *very* basic and easily understandable topol-
ogy, accessible to practically anyone.

Definition. The commutator of two elements x and y in a group
G is [x, y] B xyx−1y−1.
Example 0. In Z, [m, n] = 0.
Example 1. In S 3, [(12), (23)] = (12)(23)(12)−1(23)−1 = (123)
and in general in S ≥3,

[(i j), ( jk)] = (i jk).
Example 2. In S ≥4,

[(i jk), ( jkl)] = (i jk)( jkl)(i jk)−1( jkl)−1 = (il)( jk).
Example 3. In S ≥5,

[(i jk), (klm)] = (i jk)(klm)(i jk)−1(klm)−1 = ( jkm).

Example 4. So, in fact, in S 5, (123) =

[(412), (253)] = [[(341), (152)], [(125), (543)]] =

[[[(234), (451)], [(315), (542)]], [[(312), (245)], [(154), (423)]]] =

[ [[[(123), (354)], [(245), (531)]], [[(231), (145)], [(154), (432)]]],
[[[(431), (152)], [(124), (435)]], [[(215), (534)], [(142), (253)]]] ].

Solving the Quadratic, ax2 +bx+c = 0: δ =
√

∆; ∆ = b2−4ac;
r = δ−b

2a .

Solving the Cubic, ax3+bx2+cx+d = 0: ∆ = 27a2d2−18abcd+

4ac3 + 4b3d − b2c2; δ =
√

∆; Γ = 27a2d − 9abc + 3
√

3aδ + 2b3;

γ =
3
√

Γ
2 ; r = −

b2−3ac
γ +b+γ

3a .

Solving the Quartic, ax4 + bx3 + cx2 + dx + e = 0: ∆0 =

12ae − 3bd + c2; ∆1 = −72ace + 27ad2 + 27b2e − 9bcd + 2c3;
∆2 = 1

27

(
∆2

1 − 4∆3
0

)
; u = 8ac−3b2

8a2 ; v = 8a2d−4abc+b3

8a3 ; δ2 =
√

∆2;

Q = 1
2

(
3
√

3δ2 + ∆1
)
; q = 3√Q; S =

∆0
q +q
12a −

u
6 ; s =

√
S ;

Γ = − v
s − 4S − 2u; γ =

√
Γ; r = − b

4a +
γ
2 + s.

Theorem. There is no general formula, using only the basic arithmetic operations and taking roots, for the solution of the quintic
equation ax5 + bx4 + cx3 + dx2 + ex + f = 0.
Key Point. The “persistent root” of a closed path (path lift, in topological language) may not be closed, yet the persistent root of a
commutators of closed paths is always closed.
Proof. Suppose there was a formula, and consider the corresponding “composition of machines” picture:
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Now if γ(1)
1 , γ(1)

2 , . . . , γ(1)
16 , are “musical chairs” paths in X0 that induce permutations of the roots and we set γ(2)

1 B [γ(1)
1 , γ(1)

2 ],
γ(2)

2 B [γ(1)
3 , γ(1)

4 ], . . . , γ(2)
8 B [γ(1)

15 , γ
(1)
16 ], γ(3)

1 B [γ(2)
1 , γ(2)

2 ], . . . , γ(3)
4 B [γ(2)

7 , γ(2)
8 ], γ(4)

1 B [γ(3)
1 , γ(3)

2 ], γ(4)
2 B [γ(3)

3 , γ(3)
4 ], and finally

γ(5) B [γ(4)
1 , γ(4)

2 ] (notes: (1) these commutators make sense! (2) all of those are commutators of “long paths” (3) I don’t know the
word “homotopy”), then γ(5)�C�P1�R1� · · ·�R4 is a closed path. Indeed,

V.I. Arnold

• In X0, none of the paths is necessarily closed.
• After C, all of the paths are closed.
• After P1, all of the paths are still closed.
• After R1, the γ(1)’s may open up, but the γ(2)’s remain closed.
· · ·

• At the end, after R4, γ(4)’s may open up, but γ(5) remains closed.
But if the paths are chosen as in Example 4, γ(5)�C�P1�R1� · · ·�R4 is not a closed path. �
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Yes, Prime Minister, 1986.
Sir Humphrey: You know what happens: nice young lady comes up to you. Obviously you want to create a good impression, you
don’t want to look a fool, do you? So she starts asking you some questions: Mr. Woolley, are you worried about the number of
young people without jobs?
Bernard Woolley: Yes
Sir Humphrey: Are you worried about the rise in crime among teenagers?
Bernard Woolley: Yes
Sir Humphrey: Do you think there is a lack of discipline in our Comprehensive schools?
Bernard Woolley: Yes
Sir Humphrey: Do you think young people welcome some authority and leadership in their lives?
Bernard Woolley: Yes
Sir Humphrey: Do you think they respond to a challenge?
Bernard Woolley: Yes
Sir Humphrey: Would you be in favour of reintroducing National Service?
Bernard Woolley: Oh...well, I suppose I might be.
Sir Humphrey: Yes or no?
Bernard Woolley: Yes
Sir Humphrey: Of course you would, Bernard. After all you told me can’t say no to that. So they don’t mention the first five
questions and they publish the last one.
Bernard Woolley: Is that really what they do?
Sir Humphrey: Well, not the reputable ones no, but there aren’t many of those. So alternatively the young lady can get the
opposite result.
Bernard Woolley: How?
Sir Humphrey: Mr. Woolley, are you worried about the danger of war?
Bernard Woolley: Yes
Sir Humphrey: Are you worried about the growth of armaments?
Bernard Woolley: Yes
Sir Humphrey: Do you think there is a danger in giving young people guns and teaching them how to kill?
Bernard Woolley: Yes
Sir Humphrey: Do you think it is wrong to force people to take up arms against their will?
Bernard Woolley: Yes
Sir Humphrey: Would you oppose the reintroduction of National Service?
Bernard Woolley: Yes
Sir Humphrey: There you are, you see Bernard. The perfect balanced sample.


