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Dror Bar-Natan: Talks: StonyBrook- 1805: Thanks for inviting me to the SCGP! E]"{E] ﬁ’é‘*’(‘;»‘ ﬁ:’wl}ﬁy]lf{o‘l. Ro;.hR('Sl
at: 1 . att an verba; V|, jewnt.with van
IComputation without Representation weB:=http://drorbn. n:.t/sblS/ EI..“ e M{W i :

Abstract. A major part of “quantum topology™ is the definition
E:d computation of various knot invariants by carrying out co- | ~a

putations in quantum groups. Traditionally these computations
re carried out “in a representation”, but this is very slow: one & W LRSS

h.as to use tensor powers of thcs.c reprcscntatifms. anc! the dimcn- P @i‘ @e}@@&% N @ ] % %’ ’p ).

sions of powers grow exponentially fast. I will describe a direct- | 3 : ‘ m % @(}%% &R c
participation method for carrying out these computations without (<& : L s
having to choose a representation and explain why in many ways g i 5

the results are better and faster. The two key points we use a-
re a technique for composing infinite-order “perturbed Gaussian™ |~
differential operators, and the little-known fact that every semi- [£
simple Lie algebra can be approximated by solvable Lie algebras. e
where computations are easier.

The Knot Theory Portfolio. _cuap C}!
e Has operations L, m, A, . “"Ch::::é

e All tangles are generated by ( \\

R*' and C* (so “easy” to d"“h'"‘g
ik

strand
Tevi ersdl Si

@ Makes some properties titchi \/’ m& @@’m Q—, 83
(“genus”,  “ribbon™) be e ::? ‘\ e %Q'@%@J ﬁg @Q‘@ ﬁw%
“definable”. g @ LR & PwS

more to say, but not now). Examples

1. The l-variable identity map /: S(z) — S(z) is given by 'I| =
@% and the n-variable one by '/, = @@+ +ad,

i
L@ O &y 2. The “z; — z; variable rename map (r :8@z) - S(,,)ée <—J

Ry

produce invariants).

crossing R}

A “Quantum Group” Portfolio consists of an algebra U along
with maps (and some axioms...)

g R L Rl ) LV ISR P L comes ‘o, = @4, and it’s easy to rcnamc several variables
IO" ’0‘” mh TO‘J'/ - IC" simultaneously. .
] T 3. The “archetypal multiplication map m;’: S(zi,zj) — S(zx)”
S SB)__8(8,.8) NO) has 'm = e(*6),
i 't . . The “archetypal coproduct A, : S(z;) — S(z;,2)”, given b
_’7 e S (of " rerches / i zj+ zk{)‘; Az =pz® 1+ ljfe % I(\a's) A = :a‘:f“"i’)-"‘. : d
IPBW Bases. The U’s we care about always haveé “Poincaré-|. = ) ) NG o e
Birkhoff-Witt™ bases; there is some finite sc%orphisms p- .I‘—mil_“lw\ [,lel “_‘. h.fl?c,lf]m\ ,:’\ [!w .‘mm q eUjoU,
Oy.x.. : 8(B) — U defined by “ordering monomials” to some fi- ﬁhc vaby I\.—m;ml.\ s I SO0 _ -
ed ),x ... order. The quantum group portfolio now becomes a 5. The “W_Ct\l form of the canonical unnm‘ul;mnn rg"l;llu.)‘x?\v sta-
Fsymmetric algebra” potfolio, or a “power series” portfolio. tes that if [y, x] = fis a scalar, then €™ =ePe>*e™"". Thus
The Category DO. Hence we care about the monoidal category Woith o
DO whose objects are finite sets B and whose morphisms are W ,’/ :\( v R U
morpo(B, B') := Homg (S(B) — S(B')) = S(B'. B’) (by conve- N o

[The Composition Law. If

The Zipping Issue.
S(By) A[ > S(B)) (B, between unbound and ® O
el 'HEQE""‘J\bound lies half-zipped).

then '(f//g) = (g o f) = (g|(| - f) (f| _— ) . Zipping. If P(/,z;) is a polynomlal or whenever otherwise co-
)70, <1 I/"O

5 i , nvergent, set
Proposition. If F: S(B) — S(B’) is linear and * commuous’ , then

: g ot . —
_ﬁ intion, x* = 6’.'? =, etc.). we have 'SW,, = SUFEsnE
8

2=

/7 'F = exp (Z:,EB {izi)//F' (P([j. Zi))‘(_,-) - P(a:]v :i) =0 5
(E.g..if P = 3 a,,{"7" then (P); = 3 nlay,).
Implementation. wef/Zip |
prtaipe ez Zip“ [P_]:=P
“ < - : w Z3Pc s ) [P_] :=
ook The AL Ot (B55 (momare 1121000 1. 7 s m00f) 1. 0
Leopold Kronecker (modified) www.katlas.org Ii«xne hil |{21P(:) [gz e®? ]: Zip(g [g‘ e ]} {2 S5, 12 OZJ»

Vike: For FE S(2 j‘)’/j),
A <ER),SB)7= H%)9 /3,0—‘3(92)”;,0

StonyBrook-1805 Page 1



Mak

Sl

e (

http://drorbn.net/A cademicPensi eve/Tal ks/StonyBrook-1805/one/StonyBrook-1805_handout_on_180507.pdf

L['he Zipping / Contraction Theorem. If P has a finite {-degree
nd the y’s and the ¢'s are “small” then

A R Tl - P AP L e ]
(PG gher=d) = (PGt yin e )
proof: replace y; — hy; and test at i = 0 and at dy), and
o piypet b !
(PG e )en
= det(@) (P(@} i + yo), e 7)Y

where § is the inverse matrix of 1 - g: (&) - qj)c}ﬁ = &} (proof:
replace qj. — Hq} and test at i = 0 and at dy).

Real Zipping is a minor mess, and is done in two phases:
| Ta-phase | £y-phase

T oa (& ¥
t a |x 7

{-like variables
z-like variables

Already at € = 0 we get the best known formulas for the Alexan-

der polynomial! Oorj/nlvn

Generic Definitiom. A “docile perturbed Gaussian™ in the varia-
bles (zi)ies over the ring R is an expression of the form

ef'wp = o5 {Z EkP’«'] s

Cxponeniial Reservoirs.. The true Hilbert hotel 1s exp! Remove
one x from an “exponential reservoir” of x’s and you are left with
the same exponential reservoir:

. XXXXX d, XXXXX
® =]...+ + .. ...+

+... =@ =e',

120 120
fand if you let each element choose left or right, you get twice the

k=0
where all coefficients are in R and where P is a “docile series™:
deg Py < 4k.
Our Docility. In the case of QU,, all invariants and operations are
of the form @ P, where
® Lis aquadratic of the form }; [..z{, where z runs over {t;, a;}cs
and £ over {7j, a;}ies , with integer coefficients /..

same reservoir: B D

p AR
P —

@ = N et ‘

A Graphical Proof. Glue | P
top to bottom on the right, |
in all possible ways. Several
scenarios occur:

nyntTn ® 0 0
[ S Y
P z’s

A C “the g-
) ~ machine”
1. Start at A, go through the g-machine k > 0 times, stop at B.

Get (P(Zkz{] q'z ()) = (P(gz, ).
2. Loop through the g-machine and swallow your own tail. Get
exp (Z qk}.rk] = exp(—log(1 — ¢)) = §.

l eipl exp gs
VeVel

® Q is a quadratic for the form } g..z{. where z runs over
{xi.iies and £ over [&, y;}ies . with coefficients ¢, in the ring
Ry of rational functions in {77, A;}ics .

e Pisadocile power series in {v;, a;, Xi, i, &}ies With coefficients
in Rg, and where deg(v;, a;, x;, ;. &) = (1,2, 1, 1, 1).

Docililty Matters! The rank of the space of docile series to €* is

polynomial in the number of variables |S|. vont v

o Atel =0 we get the Rozansky-Overbay [Rol, Ro2, Ro3, Ov]
invariant, which is stronger than HOMFLY-PT polynomial and
Khovanov homology taken together!

e In general, get “higher diagonals in the Melvin-Morton-

Rozansky expansion of the coloured Jones polynomial™ [MM,

BNG], but why spoil something good?

Solvable Approximation. In g/, half is enough! Indeed gl, &

3. ...

By the reservoir splitting principle, these scenarios contribute
multiplicatively. a
Implementation. wef/Zip

E /: Zips 11stOE[Q_, P_] := (* E[Q,P] means ePL¥)
Module[(Z, z, zs, ¢, ¥s, ns, qt, zrule, Q1, Q2},
zs = Table[Z*, {&, £5}];
c=0/.Alternatives @@ (<5 |Jzs) - @;
ys = Table[d: (Q /. Alternatives @@ zs » @), {5, {5}];
ns = Table[d, (¢ /. Alternatives @@ o5 + @), {z, z5}];
qt = Inverse@Table[KS&,,q+ - 8:,:Q, {£, &5}, {2, 25}]1;
zrule = Thread[zs » qt. (25 +ys) ];
Q1 =c+ns.zs /. zrule; Q2 = Q1 /. Alternatives @@ zs + 9;
simplify /@ E[Q2, Det[qt] e ¥ Zip. [e (P /. zrule)]] |;

0, = D(N, b, 6):

: By =b: @ —

= Y b6 ()~ 6: - @™
Now define glf, := D(™, b, €5). Schematically, this is [N, N] = =],
[, ] = el and [N, ] = [ + €. The same process works for
all semi-simple Lie algebras, and at €' = 0 always yields a
solvable Lie algebra.

CU and QU. Starting from sh, get CU, = (y,a,x,1)/([t,—] =
0, [a.y] = =y, la,x] = x, [x.,¥] = 2ea — ). Quantize using
standard tools (I'm sorry) and get QU, = (y,a,x,0}/([t.,=] =

The Real Thing. In the algebra QU (explained later), over Q[[#1]]
using the yaxt order, T = ", T = T, A =", and A = A,
we have

Rij = 019 (1 + ehi (aja; - 12y2 23 /4) + O(€Y))

in S(B;, B)), and in S(B}, B}, B) we have

' = gletenatpé(1=T)h+{E Ry+ea)xtm+m Ay (] Ae ezl 0(52)}
where 4 = 2am&T + 036 (317 - 4T + 1) 4h - & BT - DxAa/2
~m& (3T = Dy A, [24+mé xyh A Ay,

A = ef(n+-'|J+r;|'(:r‘1+T|J‘z}+a(al+azJ+§(xl+xz} (1+0(e)) € 3(3*‘ By, B2),
land

R e—fr—(m—r}f{]—flﬂfﬁ—fqyﬂ—{xﬁ “ + O(E)) € S(B‘,B).

L [a,y] = -y, [a,x] = x, xy — eyx = (1 = Te <) /n).
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