StonyBrook-1805 handout on 180507

May 7, 2018 1:48 PM

Note: FOR FE S(Z) 945(3), A: < F(Z), 9(3)7 = F(2)9/2==9(2)F/2=0 **The Zipping / Contraction Theorem.** If P has a finite ζ -degree Real Zipping is a minor mess, and is done in two phases: and the y's and the q's are "small" then

$$\left\langle P(z_i, \zeta^j) e^{\eta^j z_i + y_j \zeta^j} \right\rangle_{(\zeta^j)} = \left\langle P(z_i + y_i, \zeta^j) e^{\eta^j (z_i + y_i)} \right\rangle_{(\zeta^j)},$$

(proof: replace
$$y_j \to \hbar y_j$$
 and test at $\hbar = 0$ and at ∂_{\hbar}), and

$$\begin{split} \left\langle P(z_i, \zeta^j) e^{c + \eta^i z_i + y_j \zeta^j + q^j_j z_i \zeta^j} \right\rangle_{(\zeta^j)} \\ &= \det(\tilde{q}) \left\langle P(\tilde{q}^k_i (z_k + y_k), \zeta^j) e^{c + \eta^j \tilde{q}^k_i (z_k + y_k)} \right\rangle_{(\zeta^j)} \end{split}$$

where
$$\tilde{q}$$
 is the inverse matrix of $1 - q$: $(\delta^i_j - q^i_j)\tilde{q}^j_k = \delta^i_k$ (proof: replace $q^i \to \hbar q^i$ and test at $\hbar = 0$ and at ∂_{\hbar}).

replace $q_j^i \to \hbar q_j^i$ and test at $\hbar = 0$ and at ∂_{\hbar}).

Exponential Reservoirs.. The true Hilbert hotel is exp! Remove one x from an "exponential reservoir" of x's and you are left with the same exponential reservoir:

$$e^x = \left[\dots + \frac{xxxxx}{120} + \dots \right] \xrightarrow{\partial_x} \left[\dots + \frac{x xxxx}{120} + \dots \right] = (e^x)' = e^x,$$

and if you let each element choose left or right, you get twice the

$$\mathbb{e}^x \xrightarrow{x \to x_l + x_r} \mathbb{e}^{x_l + x_r} = \mathbb{e}^{x_l} \mathbb{e}^{x_r}.$$

A Graphical Proof. Glue top to bottom on the right, in all possible ways. Several scenarios occur:

- 1. Start at A, go through the q-machine $k \ge 0$ times, stop at B. \bullet At $\epsilon^2 = 0$ we get the Rozansky-Overbay [Ro1, Ro2, Ro3, Ov] Get $\langle P(\sum_{k\geq 0} q^k z, \zeta) \rangle = \langle P(\tilde{q}z, \zeta) \rangle$.
- 2. Loop through the q-machine and swallow your own tail. Get $\exp\left(\sum q^k/k\right) = \exp(-\log(1-q)) = \tilde{q}.$
- 3. ...

and

By the reservoir splitting principle, these scenarios contribute multiplicatively.

Implementation.

E /: Zip_{S^List}⊕E[Q_, P_] := (* E[Q,P] means
$$e^{Q}P$$

Module[{\$_S}, z, zs, c, ys, ηs , qt, zrule, Q1, Q2},

zs = Table[g^* , {\$_S}];

c = Q /. Alternatives $\Theta (S^* \cup zs) \rightarrow 0$;

ys = Table[$\partial_z (Q / Alternatives \Theta zs \rightarrow 0)$, {\$_S^*}];

 ηs = Table[$\partial_z (Q / Alternatives \Theta g^* s \rightarrow 0)$, {z, zs}];

qt = Inverse Θ Table[$K\delta_{z,g^*} - \partial_{z,g}Q$, {\$_S^*}, {z, zs}];

zrule = Thread[zs \rightarrow qt.(zs + ys)];

Q1 = c + ηs .zs /. zrule; Q2 = Q1 /. Alternatives Θg zs $\rightarrow 0$;

Simplify / ΘE [Q2, Det[qt] e^{-Q^2} Zip_{S^*}[e^{Q^1} (P /. zrule)]]];

The Real Thing. In the algebra QU_{ϵ} (explained later), over $\mathbb{Q}[\![\hbar]\!]$ using the yaxt order, $T = e^{\hbar t}$, $\bar{T} = T^{-1}$, $\mathcal{A} = e^{\alpha}$, and $\bar{\mathcal{A}} = \mathcal{A}^{-1}$, we have

$${}^{t}R_{ij} = e^{\hbar(y_i x_j - t_i a_j)} \left(1 + \epsilon \hbar \left(a_i a_j - \hbar^2 y_i^2 x_j^2 / 4 \right) + O(\epsilon^2) \right)$$

in $S(B_i, B_j)$, and in $S(B_1^*, B_2^*, B)$ we have

$${}^{t}m = e^{(\alpha_{1} + \alpha_{2})a + \eta_{2}\xi_{1}(1 - T)/\hbar + (\xi_{1}\bar{\mathcal{A}}_{2} + \xi_{2})x + (\eta_{1} + \eta_{2}\bar{\mathcal{A}}_{1})y} \left(1 + \epsilon\lambda + O(\epsilon^{2})\right),$$

where $\lambda = \frac{2a\eta_2\xi_1T + \eta_2^2\xi_1^2(3T^2 - 4T + 1)/4\hbar - \eta_2\xi_1^2(3T - 1)x\bar{\mathcal{A}}_2/2}{2\pi}$ $-\eta_2^2 \xi_1 (3T-1) y \bar{\mathcal{A}}_1 / 2 + \eta_2 \xi_1 x y \hbar \bar{\mathcal{A}}_1 \bar{\mathcal{A}}_2$

 ${}^{t}\Delta = \underline{\mathbf{e}}^{\tau(t_{1}+t_{1})+\eta(y_{1}+T_{1}y_{2})+\alpha(a_{1}+a_{2})+\xi(x_{1}+x_{2})} (1 + O(\epsilon)) \in \mathcal{S}(B^{*}, B_{1}, B_{2}),$

$${}^{t}S = e^{-\tau t - \alpha a - \eta \xi(1 - \tilde{T})\mathcal{A}/\hbar - \tilde{T}\eta y\mathcal{A} - \xi x\mathcal{A}} (1 + O(\epsilon)) \in \mathcal{S}(B^*, B).$$

	τa -phase		ξ y-phase	
ζ-like variables	τ	а	ξ	у
z-like variables	t	α	x	η

Already at $\epsilon = 0$ we get the best known formulas for the Alexan-

der polynomial! Oocilify

Generic Definition. A "docile perturbed Gaussian" in the variables $(z_i)_{i \in S}$ over the ring R is an expression of the form

$$\mathrm{e}^{q^{ij}z_iz_j}P=\mathrm{e}^{q^{ij}z_iz_j}\left(\sum_{k\geq 0}\epsilon^kP_k\right),$$

where all coefficients are in R and where P is a "docile series": $\deg P_k \leq 4k$.

Our Docility. In the case of QU_{ϵ} , all invariants and operations are of the form $e^{L+Q}P$, where

- L is a quadratic of the form $\sum l_{z\zeta}z\zeta$, where z runs over $\{t_i, \alpha_i\}_{i\in S}$ and ζ over $\{\tau_i, a_i\}_{i \in S}$, with integer coefficients $l_{\zeta\zeta}$.
- Q is a quadratic for the form $\sum q_{z\zeta}z\zeta$, where z runs over $\{x_i, \eta_i\}_{i \in S}$ and ζ over $\{\xi_i, y_i\}_{i \in S}$, with coefficients $q_{z\zeta}$ in the ring R_S of rational functions in $\{T_i, \mathcal{A}_i\}_{i \in S}$.
- P is a docile power series in $\{y_i, a_i, x_i, \eta_i, \xi_i\}_{i \in S}$ with coefficients in R_S , and where $\deg(y_i, a_i, x_i, \eta_i, \xi_i) = (1, 2, 1, 1, 1)$.

Docility Matters! The rank of the space of docile series to ϵ^k is polynomial in the number of variables |S|.

- invariant, which is stronger than HOMFLY-PT polynomial and Khovanov homology taken together!
- In general, get "higher diagonals in the Melvin-Morton-Rozansky expansion of the coloured Jones polynomial" [MM, BNG], but why spoil something good?

Solvable Approximation. In gl_n , half is enough! Indeed $gl_n \oplus$ ωεβ/Zip $α_n = \mathcal{D}(\nabla, b, \delta):$

Now define $gl_n^{\epsilon} := \mathcal{D}(\nabla, b, \epsilon \delta)$. Schematically, this is $[\nabla, \nabla] = \nabla$, $[\triangle, \triangle] = \epsilon \triangle$, and $[\nabla, \triangle] = \triangle + \epsilon \nabla$. The same process works for all semi-simple Lie algebras, and at $e^{k+1} = 0$ always yields a solvable Lie algebra.

CU and QU. Starting from sl_2 , get $CU_{\epsilon} = \langle y, a, x, t \rangle / ([t, -]) =$ $[0, [a, y] = -y, [a, x] = x, [x, y] = 2\epsilon a - t]$. Quantize using standard tools (I'm sorry) and get $QU_{\epsilon} = \langle y, a, x, t \rangle / ([t, -]) =$ 0, [a, y] = -y, [a, x] = x, $xy - e^{\hbar \epsilon} yx = (1 - Te^{-2\hbar \epsilon a})/\hbar$).

BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996) 103-133.

BV] D. Bar-Natan and R. van der Veen, A Polynomial Time Knot Polynomial, arXiv:1708.04853.

MM] P. M. Melvin and H. R. Morton, The coloured Jones function, Commun. Math. Phys. 169 (1995) 501-520.

Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial, University of North Carolina PhD thesis.

Rol] L. Rozansky, A contribution of the trivial flat connection to the Jones polynomial and Witten's invariant of 3d manifolds, I, Comm. Math. Phys. 175-2 (1996) 275-296, arXiv:hep-th/9401061.

Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math. 134-1 (1998) 1-31, arXiv:q-alg/9604005.

[Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:math/0201139.