Abstract. People like identifying and naming the things they see. It's an oak, not just a tree, a hawk, not just a bird, and a tiger, not just an animal. I'll tell you how to identify and name the 17 symmetry patterns you can find on floor tiles and wallpapers all around you (yes, there are exactly 17 of them, no more and no less).

Gotta catch 'em all!

Reading. An excellent book on the subject is The Symmetries of Things by J. H. Conway, H. Burgiel, and C. Goodman-Strauss, CRC Press, 2008.

Another nice text is Classical Tessellations and Three-Manifolds by J. M. Montesinos, Springer-Verlag, 1987.

Question. In what ways can you
 make $\$ 2$ change, using coins denominated $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}$, etc.? Answer. $2=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{2}{3}+\frac{2}{3}+\frac{2}{3}=\frac{3}{4}+\frac{3}{4}+\frac{1}{2}=$ $\frac{5}{6}+\frac{2}{3}+\frac{1}{2}$, and that's it.

Theorem. There are precisely 17 patterns with which to tile the plane, no more, no less. They are all made of combinations of the 10 basic features, $2,3,4,6, \not, \$, 4, \phi, M$, and G, as follows:

\checkmark	Dror's	Conway's	crystallo -graphic	\checkmark	Dror's	Conway's	crystallo
	2222	2222	p2		$3 \$$	$3^{*} 3$	p31m
	333	333	p3		222	$2 * 22$	cmm
	442	442	p4		22M	22^{*}	pmg
	632	632	p6		MM	**	pm
	2222	*2222	pmm		MG	$*_{0}$	cm
	\$\$\$	*333	p3m1		GG	OO	pg
	442	*442	p 4 m		22G	220	pgg
	\$\$2	*632	p 6 m		\emptyset	0	p1
	42	$4^{*} 2$	p4g		© Dror Ba	-Natan, Oc	tober 2014

Riddle. Which symmetry pattern appears twice below?

Tilings worksheet. Classify the pictures on the other side according to the following possibilities: $2222=2222$, $333=333$,
 $\mathrm{MG}={ }^{*} \mathrm{o}_{\mathrm{o}}, \mathrm{GG}=\mathrm{oo}, 22 \mathrm{G}=22 \mathrm{o}$, and $\emptyset=0$ (the pictures come in \{context, pattern\} pairs).

