I Still Don't Understand the Alexander Polynomial

Dror Bar-Natan, http://drorbn.net/mo21
Moscow by Web, April 2021

Abstract. As an algebraic knot theorist, I still don't understand the Alexander polynomial. There are two conventions as for how to present tangle theory in algebra: one may name the strands of a tangle, or one may name their ends. The distinction might seem too minor to matter, yet it leads to a completely different view of the set of tangles as an algebraic structure. There are lovely formulas for the Alexander polynomial as viewed from either perspective, and they even agree where they meet. But the "strands" formulas know about strand doubling while the "ends" ones don't, and the "ends" formulas know about skein relations while the "strands" ones don't. There ought to be a common generalization, but I don't know what it is.

I use talks to self-motivate; so often I choose a topic and write an abstract when I know I can do it, yet when I haven't done it yet. This time it turns out my abstract was wrong - I'm still uncomfortable with the Alexander polynomial, but in slightly different ways than advertised two slides before.

My discomfort.

- I can compute the multivariable Alexander polynomial real fast:

$$
\longrightarrow(u v w)^{-1 / 2}(u-1)(v-1)(w-1) .
$$

- But I can only prove "skein relations" real slow:

1. Virtual Skein Theory Heaven

Definition. A "Contraction Algebra" assigns a set $\mathcal{T}(\mathcal{X}, X)$ to any pair of finite sets $\mathcal{X}=\{\xi \ldots\}$ and $X=\{x, \ldots\}$ provided $|\mathcal{X}|=|X|$, and has operations

- "Disjoint union" $\sqcup: \mathcal{T}(\mathcal{X}, X) \times \mathcal{T}(\mathcal{Y}, Y) \rightarrow \mathcal{T}(\mathcal{X} \sqcup \mathcal{Y}, X \sqcup Y)$, provided $\mathcal{X} \cap \mathcal{Y}=X \cap Y=\emptyset$.
- "Contractions" $c_{x, \xi}: \mathcal{T}(\mathcal{X}, X) \rightarrow \mathcal{T}(\mathcal{X} \backslash \xi, X \backslash x)$, provided $x \in X$ and $\xi \in \mathcal{X}$.
- Renaming operations $\sigma_{\eta}^{\xi}: \mathcal{T}(\mathcal{X} \sqcup\{\xi\}, X) \rightarrow \mathcal{T}(\mathcal{X} \sqcup\{\eta\}, X)$ and $\sigma_{y}^{x}: \mathcal{T}(\mathcal{X}, X \sqcup\{x\}) \rightarrow \mathcal{T}(\mathcal{X}, X \sqcup\{y\})$.
Subject to axioms that will be specified right after the two examples in the next three slides.
If R is a ring, a contraction algebra is said to be " R-linear" if all the $\mathcal{T}(\mathcal{X}, X)$'s are R-modules, if the disjoint union operations are R-bilinear, and if the contractions $c_{x, \xi}$ and the renamings σ : are R-linear.
(Contraction algebras with some further "unit" properties are called "wheeled props" in [MMS, DHR])

Note 3. A contraction algebra morphism out of \mathcal{T} is an invariant of virtual tangles (and hence of virtual knots and links) and would be an ideal tool to prove Skein Relations:

Thanks for inviting me to Moscow! As most of you have never seen it, here's a picture of the lecture room:

If you can, please turn your video on! (And mic, whenever needed).

This talk is to a large extent an elucidation of the Ph.D. theses of my former students Jana Archibald and Iva Halacheva. See [Ar, Ha1, Ha2].

Also thanks to Roland van der Veen for comments.
A technicality. There's supposed to be fire alarm testing in my building today. Don't panic!

Example 1. Let $\mathcal{T}(\mathcal{X}, X)$ be the set of virtual tangles with incoming ends ("tails") labeled by \mathcal{X} and outgoing ends ("heads") labeled by X, with \sqcup and σ. the obvious disjoint union and end-renaming operations, and with $c_{x, \xi}$ the operation of attaching a head x to a tail ξ while introducing no new crossings.
Note 1. \mathcal{T} can be made linear by allowing formal linear combinations.
Note 2. \mathcal{T} is finitely presented, with generators the positive and negative crossings, and with relations the Reidemeister moves! (If you want, you can take this to be the definition of "virtual tangles").

Example 2. Let V be a finite dimensional vector space and set $\mathcal{V}(\mathcal{X}, X):=\left(V^{*}\right)^{\otimes \mathcal{X}} \otimes V^{\otimes X}$, with $\sqcup=\otimes$, with σ. the operation of renaming a factor, and with $c_{X, \xi}$ the operation of contraction: the evaluation of tensor factor ξ (which is a V^{*}) on tensor factor x (which is a V).

Axioms. One axiom is primary and interesting,

- Contractions commute! Namely, $c_{x, \xi} / / c_{y, \eta}=c_{y, \eta} / / c_{x, \xi}$ (or in old-speak, $\left.c_{y, \eta} \circ c_{x, \xi}=c_{x, \xi} \circ c_{y, \eta}\right)$.
And the rest are just what you'd expect:
$-\sqcup$ is commutative and associative, and it commutes with c., and with σ. whenever that makes sense.
- $c_{\text {., }}$ is "natural" relative to renaming: $c_{x, \xi}=\sigma_{y}^{x} / / \sigma_{\eta}^{\xi} / / c_{y, \eta}$.
- $\sigma_{\xi}^{\xi}=\sigma_{x}^{x}=I d, \sigma_{\eta}^{\xi} / / \sigma_{\zeta}^{\eta}=\sigma_{\zeta}^{\xi}, \sigma_{y}^{x} / / \sigma_{z}^{y}=\sigma_{z}^{x}$, and renaming operations commute where it makes sense.

2. Heaven is a Place on Earth

(A version of the main results of Archibald's thesis, [Ar]).
Let us work over the base ring $\mathcal{R}=\mathbb{Q}\left[\left\{T^{ \pm 1 / 2}: T \in C\right\}\right]$. Set

$$
\mathcal{A}(\mathcal{X}, X):=\left\{w \in \Lambda\left(\overline{\mathcal{X} \sqcup X): \operatorname{deg}_{\mathcal{X}} w}=\operatorname{deg}_{X} w\right\}\right.
$$

(so in particular the elements of $\mathcal{A}(\mathcal{X}, X)$ are all of even degree). The union operation is the wedge product, the renaming operations are changes of variables, and $c_{X, \xi}$ is defined as follows. Write $w \in \mathcal{A}(\mathcal{X}, X)$ as a sum of terms of the form $u w^{\prime}$ where $u \in \Lambda(\xi, x)$ and $w^{\prime} \in \mathcal{A}(\mathcal{X} \backslash \xi, X \backslash x)$, and map u to 1 if it is 1 or $x \xi$ and to 0 is if is ξ or x :

$$
1 w^{\prime} \mapsto w^{\prime}, \quad \xi w^{\prime} \mapsto 0, \quad x w^{\prime} \mapsto 0, \quad x \xi w^{\prime} \mapsto w^{\prime}
$$

Proposition. \mathcal{A} is a contraction algebra.

We construct a morphism of coloured contraction algebras $\mathcal{A}: \mathcal{T} \rightarrow \mathcal{A}$ by declaring

$$
\begin{aligned}
X_{i j k l}[S, T] & \mapsto T^{-1 / 2} \exp \left(\left(\begin{array}{ll}
\xi_{l} & \xi_{i}
\end{array}\right)\left(\begin{array}{cc}
1 & 1-T \\
0 & T
\end{array}\right)\binom{x_{j}}{x_{k}}\right) \\
\bar{X}_{i j k l}[S, T] & \mapsto T^{1 / 2} \exp \left(\left(\begin{array}{ll}
\xi_{i} & \xi_{j}
\end{array}\right)\left(\begin{array}{cc}
T^{-1} & 0 \\
1-T^{-1} & 1
\end{array}\right)\binom{x_{k}}{x_{l}}\right) \\
P_{i j}[T] & \mapsto \exp \left(\xi_{i} x_{j}\right)
\end{aligned}
$$

with

(Note that the matrices appearing in these formulas are the Burau matrices).

3. An Implementation of \mathcal{A}

If I didn't implement I wouldn't believe myself.
Written in Mathematica [Wo], available as the notebook Alpha.nb at http://drorbn.net/mo21/ap. Code lines are highlighted in grey, demo lines are plain. We start with an implementation of elements ("Wedge") of exterior algebras, and of the wedge product ("WP"):

```
WP [Wedge[u___], Wedge[v___]] := Signature[{u,v}] * Wedge @@ Sort[{u,v}];
WP[0, _] = WP[_, 0] = 0;
WP[A_, B_] :=
    Expand[Distribute[A ** B] /.
        (a_. * u_Wedge) ** (b_. * v_Wedge) :-> abWP[u,v]];
WP[Wedge[^] + Wedge[a] - 2b^a, Wedge[^] - 3 Wedge[b] + 7c^d]
Wedge[] + Wedge[a] - 3 Wedge[b] - a^b + 7c^d+7a^c^d+14a^b^c^d
```


Comments.

- We can relax $|\mathcal{X}|=|X|$ at no cost.
- We can lose the distinction between \mathcal{X} and X and get "circuit algebras".
- There is a "coloured version", where $\mathcal{T}(\mathcal{X}, X)$ is replaced with $\mathcal{T}(\mathcal{X}, X, \lambda, I)$ where $\lambda: \mathcal{X} \rightarrow C$ and $I: X \rightarrow C$ are "colour functions" into some set C of "colours", and contractions $c_{x, \xi}$ are allowed only if x and ξ are of the same colour, $I(x)=\lambda(\xi)$. In the world of tangles, this is "coloured tangles".

Alternative Formulations.

- $c_{x, \xi} w=\iota_{\xi} \iota_{x} \mathbb{e}^{\times \xi} w$, where ι. denotes interior multiplication.
- Using Fermionic integration,

$$
c_{x, \xi} w=\int \mathbb{e}^{x \xi} w d \xi d x
$$

- $c_{X, \xi}$ represents composition in exterior algebras! With $X^{*}:=\left\{x^{*}: x \in X\right\}$, we have that $\operatorname{Hom}(\wedge X, \wedge Y) \cong \Lambda\left(X^{*} \sqcup Y\right)$ and the following square commutes:

- Similarly, $\Lambda(\mathcal{X} \sqcup X) \cong\left(H^{*}\right)^{\otimes \mathcal{X}} \otimes H^{\otimes X}$ where H is a 2-dimensional "state space" and H^{*} is its dual. Under this identification, $c_{x, \xi}$ becomes the contraction of an H factor with an H^{*} factor.

Theorem.

If D is a classical link diagram with k components coloured T_{1}, \ldots, T_{k} whose first component is open and the rest are closed, if MVA is the multivariable Alexander polynomial of the closure of D (with these colours), and if ρ_{j} is the counterclockwise rotation number of the j th component of D, then

$$
\mathcal{A}(D)=T_{1}^{-1 / 2}\left(T_{1}-1\right)\left(\prod_{j} T_{j}^{\rho_{j} / 2}\right) \cdot M V A \cdot\left(1+\xi_{\text {in }} \wedge x_{\mathrm{out}}\right)
$$

(\mathcal{A} vanishes on closed links).

We then define the exponentiation map in exterior algebras ("WExp") by summing the series and stopping the sum once the current term (" t ") vanishes:
$\operatorname{WExp}\left[A_{-}\right]:=\operatorname{Module}[\{s=\operatorname{Wedge}[\wedge, \mathrm{t}=$ Wedge $[\wedge, \mathrm{k}=0\}$,
While $[t=!=0, s+=(t=\operatorname{Expand}[W P[t, A] /(++k)])] ; s]$
$W \operatorname{Exp}[a \wedge b+c \wedge d+e \wedge f]$
Wedge[] $+a \wedge b+c \wedge d+e \wedge f+a \wedge b \wedge c \wedge d+a \wedge b \wedge e \wedge f+c \wedge d \wedge e \wedge f+a \wedge b \wedge c \wedge d \wedge e \wedge f$

Contractions!
$\mathbf{c}_{x_{-}, y_{-}}\left[{ }^{w}\right.$ _Wedge $]:=$ Module $[\{\mathrm{i}, \mathrm{j}\}$,
$\{i\}=$ FirstPosition $[w, x,\{0\}] ;\{j\}=$ FirstPosition $[w, y,\{0\}]$;
$\{w \quad(i=0) \wedge(j=0)$
$\left[(-1)^{i+j+I f[i>j, 0,1]}\right.$ Delete $[w,\{\{i\},\{j\}\}] \quad(i>0) \wedge(j>0)$
];
$\mathbf{c}_{x_{-}, y_{-}}\left[\varepsilon_{-}\right]:=\varepsilon / . w_{-}$Wedge $: \rightarrow \mathbf{c}_{x, y}[\omega]$
WExp [a^b+2c^d]
$c_{d, c}$ @WExp $[\mathrm{a} \wedge \mathrm{b}+2 \mathrm{c} \wedge \mathrm{d}]$
Wedge [] $+a \wedge b+2 c \wedge d+2 a \wedge b \wedge c \wedge d$
-Wedge [] - a ^b

The negative crossing and the "point":

$\mathcal{H}\left[\overline{\mathbf{X}}_{i_{-}, j_{-}, k_{-}, L_{-}}\left[S_{-}, T_{-}\right]\right]:=\mathcal{H}\left[\{i, j\},\{k, L\},\langle | \xi_{i} \rightarrow S, \xi_{j} \rightarrow T, \mathbf{x}_{k} \rightarrow S, \mathbf{x}_{L} \rightarrow T| \rangle\right.$,
$\left.\quad \operatorname{Expand}\left[T^{1 / 2} \operatorname{WExp}\left[\operatorname{Expand}\left[\left\{\xi_{i}, \xi_{j}\right\} \cdot\left(\begin{array}{cc}T^{-1} & 0 \\ 1-T^{-1} & 1\end{array}\right) \cdot\left\{\mathbf{x}_{k}, \mathbf{x}_{l}\right\}\right] / . \xi_{a_{-}} \mathbf{x}_{b_{-}}: \rightarrow \xi_{a} \wedge \mathrm{X}_{b}\right]\right]\right] ;$
$\mathscr{H}\left[\mathbf{X}_{\left.i_{-}, j_{-}, k_{-}, l_{-}\right]}\right]:=\mathcal{A}\left[\mathbf{X}_{i, j, k, l}\left[\tau_{i}, \tau_{l}\right]\right] ;$
$\mathscr{A}\left[\mathbf{P}_{i_{-}, j_{-}}\left[T_{-}\right]\right]:=\mathscr{A}\left[\{i\},\{j\},\langle | \xi_{i} \rightarrow T, \mathbf{x}_{j} \rightarrow T| \rangle, \operatorname{WExp}\left[\xi_{i} \wedge \mathrm{x}_{j}\right]\right] ;$
$\mathcal{H}\left[\mathbf{P}_{\left.i_{-}, j_{-}\right]}\right]:=\mathcal{A}\left[\mathbf{P}_{i, j}\left[\tau_{i}\right]\right] ;$

The union operation on \mathcal{A} 's (implemented as "multiplication"):
$\mathcal{F} /: \mathscr{A}\left[i s 1_{-}, o s 1_{-}, c s 1_{-}, w 1_{-}\right] \times \mathcal{F}\left[i s 2_{-}\right.$, os2_, cs2_, w2_]:=
$\mathcal{A}[i s 1 \cup i s 2$, os1 $\cup o s 2$, Join [cs1, cs2], WP [w1, w2]]
Short $\left[\mathcal{F}\left[\mathrm{X}_{2,4,3,1}[\mathrm{~S}, \mathrm{~T}]\right] \times \mathcal{F}\left[\overline{\mathrm{X}}_{3,4,6,5}\right], 5\right]$

$\mathcal{H}[\{1,2,3,4\},\{3,4,5,6\}$,
$\langle | \xi_{2} \rightarrow \mathbf{S}, \mathrm{X}_{4} \rightarrow \mathrm{~T}, \mathrm{X}_{3} \rightarrow \mathrm{~S}, \xi_{1} \rightarrow \mathrm{~T}, \xi_{3} \rightarrow \tau_{3}, \xi_{4} \rightarrow \tau_{4}, \mathrm{X}_{6} \rightarrow \tau_{3}, \mathrm{X}_{5} \rightarrow \tau_{4}| \rangle, \frac{\sqrt{\tau_{4}} \text { Wedge }[]}{\sqrt{T}}-$
$\frac{\sqrt{\tau_{4}} X_{3} \wedge \xi_{1}}{\sqrt{T}}+\sqrt{T} \sqrt{\tau_{4}} X_{3} \wedge \xi_{1}-\sqrt{T} \sqrt{\tau_{4}} \mathbf{X}_{3} \wedge \xi_{2}-\frac{\sqrt{\tau_{4}} X_{4} \wedge \xi_{1}}{\sqrt{T}}-\frac{\sqrt{\tau_{4}} X_{5} \wedge \xi_{4}}{\sqrt{T}}-$
$\frac{\mathbf{x}_{6} \wedge \xi_{3}}{\sqrt{T} \sqrt{\tau_{4}}}+\ll 40 \gg+\frac{\sqrt{T} \mathbf{x}_{3} \wedge \mathbf{x}_{5} \wedge \mathbf{x}_{6} \wedge \xi_{1} \wedge \xi_{3} \wedge \xi_{4}}{\sqrt{\tau_{4}}}-\frac{\sqrt{T} \mathbf{x}_{3} \wedge \mathbf{x}_{5} \wedge \mathbf{x}_{6} \wedge \xi_{2} \wedge \xi_{3} \wedge \xi_{4}}{\sqrt{\tau_{4}}}-$
$\left.\frac{\mathbf{x}_{4} \wedge \mathbf{x}_{5} \wedge \mathbf{x}_{6} \wedge \xi_{1} \wedge \xi_{3} \wedge \xi_{4}}{\sqrt{T} \sqrt{\tau_{4}}}+\frac{\sqrt{T} \mathbf{x}_{3} \wedge \mathbf{x}_{4} \wedge \mathbf{x}_{5} \wedge \mathbf{x}_{6} \wedge \xi_{1} \wedge \xi_{2} \wedge \xi_{3} \wedge \xi_{4}}{\sqrt{\tau_{4}}}\right]$
\mathcal{A} [is, os, cs, w] is also a container for the values of the \mathcal{A}-invariant of a tangle. In it, is are the labels of the input strands, os are the labels of the output strands, cs is an assignment of colours (namely, variables) to all the ends $\left\{\xi_{i}\right\}_{i \in \text { is }} \sqcup\left\{x_{j}\right\}_{j \in \text { os }}$, and w is the "payload":
$\mathscr{A}\left[\mathbf{X}_{i_{-}, j_{-}, k_{-}, L_{-}}\left[S_{-}, T_{-}\right]\right]:=\mathscr{A}\left[\{L, i\},\{j, k\},\langle | \xi_{i} \rightarrow S, \mathbf{x}_{j} \rightarrow T, \mathbf{x}_{k} \rightarrow S, \xi_{L} \rightarrow T| \rangle\right.$,
$\left.\operatorname{Expand}\left[T^{-1 / 2} \operatorname{WExp}\left[\operatorname{Expand}\left[\left\{\xi_{l}, \xi_{i}\right\} \cdot\left(\begin{array}{cc}1 & 1-T \\ 0 & T\end{array}\right) \cdot\left\{\mathbf{x}_{j}, \mathbf{x}_{k}\right\}\right] / \cdot \xi_{a_{-}} \mathbf{x}_{b_{-}}: \rightarrow \xi_{a} \wedge \mathrm{x}_{b}\right]\right]\right]$;
$\mathcal{F}\left[\mathrm{X}_{1,2,3,4}[\mathrm{u}, \mathrm{v}]\right]$
$\mathcal{F}\left[\{4,1\},\{2,3\},\langle | \xi_{1} \rightarrow u, x_{2} \rightarrow v, x_{3} \rightarrow u, \xi_{4} \rightarrow v| \rangle\right.$,
$\left.\frac{\text { Wedge [] }}{\sqrt{v}}-\frac{x_{2} \wedge \xi_{4}}{\sqrt{v}}-\sqrt{v} x_{3} \wedge \xi_{1}-\frac{x_{3} \wedge \xi_{4}}{\sqrt{v}}+\sqrt{v} x_{3} \wedge \xi_{4}+\sqrt{v} x_{2} \wedge x_{3} \wedge \xi_{1} \wedge \xi_{4}\right]$
$\mathcal{F}\left[\overline{\mathbf{X}}_{i_{-}, j_{-}, k_{-}, \iota_{-}}\right]:=\mathcal{H}\left[\overline{\mathbf{X}}_{i, j, k, \iota}\left[\tau_{i}, \tau_{j}\right]\right] ;$

The linear structure on \mathcal{A} 's:
$\mathcal{A} /: \alpha_{-} \times \mathcal{H}\left[i s_{-}, o s_{-}, c s_{-}, w_{-}\right]:=\mathcal{A}[i s, o s, c s$, Expand $[\alpha w]]$
$\mathcal{F} /: \mathcal{A}\left[i s 1_{-}\right.$, os1_, cs1_, w1_] + $\mathcal{F}\left[i s 2_{-}, o s 2_{-}, c s 2_{-}, w 2_{-}\right] / ;$
(Sort@is1 == Sort@is2) ^(Sort@os1 == Sort@os2) ^
(Sort@Normal@cs1 == Sort@Normal@cs2) := $\mathcal{F}[i s 1, o s 1, c s 1, w 1+w 2]$
Deciding if two \mathcal{A} 's are equal:
$\mathcal{F} /: \mathcal{A}\left[i s 1_{-}\right.$, os1_, _, w1_] $\equiv \mathcal{H}\left[i s 2_{-}\right.$, os2_, _, w2_] :=
TrueQ[(Sort@is1 === Sort@is2) ^(Sort@os1 === Sort@os2) ^
PowerExpand [$w 1==w 2$]]

Contractions of \mathcal{A}-objects:

Automatic and intelligent multiple contractions:


```
H[{A_\mathscr{A}}]:=c[A];
H[{A1_\mathscr{A},As__\mathscr{A}}]:= Module[{A2},
    A2 = First@MaximalBy[{As}, Length[A1\llbracket1\rrbracket\ #\llbracket2\rrbracket] + Length[A1\llbracket2\rrbracket\cap \\llbracket1\rrbracket] &];
    \mathcal{F[Join[{c[A1 A2]}, DeleteCases[{As}, A2]]]]}]
\mathcal{F}[OS_List]:=\mathscr{F}[\mathcal{F}/@OS]
```



```
    Wedge[]-\mp@subsup{x}{5}{}^\mp@subsup{\xi}{1}{}-\mp@subsup{x}{6}{}\wedge\mp@subsup{\xi}{2}{}-\mp@subsup{x}{5}{\prime}\wedge\mp@subsup{x}{6}{}\wedge\mp@subsup{\xi}{1}{}\wedge\mp@subsup{\xi}{2}{}]
```



```
    Wedge[]- }\mp@subsup{x}{5}{}\wedge\mp@subsup{\xi}{1}{}-\mp@subsup{x}{6}{}\wedge\mp@subsup{\xi}{2}{}-\mp@subsup{x}{5}{}\wedge\mp@subsup{x}{6}{}\wedge\mp@subsup{\xi}{1}{}\wedge\mp@subsup{\xi}{2}{}
```

```
```

c}\mp@subsup{\boldsymbol{h}}{-}{},\mp@subsup{t}{-}{}@\mathcal{F}[i\mp@subsup{s}{-}{\prime},o\mp@subsup{s}{-}{\prime},c\mp@subsup{s}{-}{\prime},\mp@subsup{w}{-}{\prime}]:=\mathcal{A}

```
```

c}\mp@subsup{\boldsymbol{h}}{-}{},\mp@subsup{t}{-}{}@\mathcal{F}[i\mp@subsup{s}{-}{\prime},o\mp@subsup{s}{-}{\prime},c\mp@subsup{s}{-}{\prime},\mp@subsup{w}{-}{\prime}]:=\mathcal{A}
DeleteCases[is, t], DeleteCases[os,h], KeyDrop[cs, {\mp@subsup{x}{h}{},\mp@subsup{\xi}{t}{\prime}}],\mp@subsup{\mathbf{c}}{\mp@subsup{\mathbf{x}}{h}{},\mp@subsup{\xi}{t}{}}{}[w]
DeleteCases[is, t], DeleteCases[os,h], KeyDrop[cs, {\mp@subsup{x}{h}{},\mp@subsup{\xi}{t}{\prime}}],\mp@subsup{\mathbf{c}}{\mp@subsup{\mathbf{x}}{h}{},\mp@subsup{\xi}{t}{}}{}[w]
] /. If[MatchQ[cs[\mp@subsup{\xi}{t}{\prime}],\mp@subsup{\tau}{-}{\prime}],\operatorname{cs}[\mp@subsup{\xi}{t}{}]->\operatorname{cs}[\mp@subsup{x}{h}{}],\operatorname{cs}[\mp@subsup{x}{h}{}]->\operatorname{cs}[\mp@subsup{\xi}{t}{}]];
] /. If[MatchQ[cs[\mp@subsup{\xi}{t}{\prime}],\mp@subsup{\tau}{-}{\prime}],\operatorname{cs}[\mp@subsup{\xi}{t}{}]->\operatorname{cs}[\mp@subsup{x}{h}{}],\operatorname{cs}[\mp@subsup{x}{h}{}]->\operatorname{cs}[\mp@subsup{\xi}{t}{}]];
c
c
\mathcal{F}[{1, 2, 3},{3,5,6},\langle|\mp@subsup{\xi}{2}{}->\textrm{S},\mp@subsup{\textrm{x}}{3}{}->\textrm{S},\mp@subsup{\xi}{1}{}->\textrm{T},\mp@subsup{\xi}{3}{}->\mp@subsup{\tau}{3}{},\mp@subsup{\textrm{x}}{6}{}->\mp@subsup{\tau}{3}{},\mp@subsup{\textrm{x}}{5}{}->\textrm{T}|\rangle,

```
```

\mathcal{F}[{1, 2, 3},{3,5,6},\langle|\mp@subsup{\xi}{2}{}->\textrm{S},\mp@subsup{\textrm{x}}{3}{}->\textrm{S},\mp@subsup{\xi}{1}{}->\textrm{T},\mp@subsup{\xi}{3}{}->\mp@subsup{\tau}{3}{},\mp@subsup{\textrm{x}}{6}{}->\mp@subsup{\tau}{3}{},\mp@subsup{\textrm{x}}{5}{}->\textrm{T}|\rangle,

```
```



```
```

 T }\mp@subsup{\mathbf{x}}{3}{}\wedge\mp@subsup{\mathbf{x}}{5}{}\wedge\mp@subsup{\xi}{1}{}\wedge\mp@subsup{\xi}{2}{}-\mp@subsup{\mathbf{x}}{3}{}\wedge\mp@subsup{\mathbf{x}}{6}{}\wedge\mp@subsup{\xi}{1}{}\wedge\mp@subsup{\xi}{2}{}+T\mp@subsup{\mathbf{x}}{3}{}\wedge\mp@subsup{\mathbf{x}}{6}{}\wedge\mp@subsup{\xi}{1}{}\wedge\mp@subsup{\xi}{2}{}+\mp@subsup{\mathbf{x}}{3}{}\wedge\mp@subsup{\mathbf{x}}{6}{}\wedge\mp@subsup{\xi}{1}{}\wedge\mp@subsup{\xi}{3}{}
    ```
```

 T }\mp@subsup{\mathbf{x}}{3}{}\wedge\mp@subsup{\mathbf{x}}{5}{}\wedge\mp@subsup{\xi}{1}{}\wedge\mp@subsup{\xi}{2}{}-\mp@subsup{\mathbf{x}}{3}{}\wedge\mp@subsup{\mathbf{x}}{6}{}\wedge\mp@subsup{\xi}{1}{}\wedge\mp@subsup{\xi}{2}{}+T\mp@subsup{\mathbf{x}}{3}{}\wedge\mp@subsup{\mathbf{x}}{6}{}\wedge\mp@subsup{\xi}{1}{}\wedge\mp@subsup{\xi}{2}{}+\mp@subsup{\mathbf{x}}{3}{}\wedge\mp@subsup{\mathbf{x}}{6}{}\wedge\mp@subsup{\xi}{1}{}\wedge\mp@subsup{\xi}{3}{}
 \frac{\mp@subsup{\mathbf{x}}{3}{}\wedge\mp@subsup{\mathbf{x}}{6}{}\wedge\mp@subsup{\xi}{1}{}\wedge\mp@subsup{\xi}{3}{}}{T}-\mp@subsup{\mathbf{x}}{3}{}\wedge\mp@subsup{\mathbf{x}}{6}{}\wedge\mp@subsup{\xi}{2}{}\wedge\mp@subsup{\xi}{3}{}-\frac{\mp@subsup{\mathbf{x}}{5}{}\wedge\mp@subsup{\mathbf{x}}{6}{}\wedge\mp@subsup{\xi}{1}{}\wedge\mp@subsup{\xi}{3}{}}{T}-\mp@subsup{\mathbf{x}}{3}{}\wedge\mp@subsup{\mathbf{x}}{5}{}\wedge\mp@subsup{\mathbf{x}}{6}{}\wedge\mp@subsup{\xi}{1}{}\wedge\mp@subsup{\xi}{2}{}\wedge\mp@subsup{\xi}{3}{}]
    ```
```

 \frac{\mp@subsup{\mathbf{x}}{3}{}\wedge\mp@subsup{\mathbf{x}}{6}{}\wedge\mp@subsup{\xi}{1}{}\wedge\mp@subsup{\xi}{3}{}}{T}-\mp@subsup{\mathbf{x}}{3}{}\wedge\mp@subsup{\mathbf{x}}{6}{}\wedge\mp@subsup{\xi}{2}{}\wedge\mp@subsup{\xi}{3}{}-\frac{\mp@subsup{\mathbf{x}}{5}{}\wedge\mp@subsup{\mathbf{x}}{6}{}\wedge\mp@subsup{\xi}{1}{}\wedge\mp@subsup{\xi}{3}{}}{T}-\mp@subsup{\mathbf{x}}{3}{}\wedge\mp@subsup{\mathbf{x}}{5}{}\wedge\mp@subsup{\mathbf{x}}{6}{}\wedge\mp@subsup{\xi}{1}{}\wedge\mp@subsup{\xi}{2}{}\wedge\mp@subsup{\xi}{3}{}]
    ```
```

4. Skein relations and evaluations for \mathcal{A}

$$
\begin{aligned}
& \mathcal{A} @\left\{\bar{x}_{4,1,6,3}[v, u], \bar{x}_{3,2,5,4}\right\} \\
& \mathscr{F}\left[\{1,2\},\{5,6\},\langle | \xi_{2} \rightarrow v, x_{5} \rightarrow u, \xi_{1} \rightarrow u, x_{6} \rightarrow v| \rangle,\right. \\
& \sqrt{u} \sqrt{v} \text { wedge }[]-\frac{\sqrt{u} x_{5} \wedge \xi_{1}}{\sqrt{v}}+\frac{\sqrt{u} x_{5} \wedge \xi_{2}}{\sqrt{v}}-\sqrt{u} \sqrt{v} x_{5} \wedge \xi_{2}+\frac{\sqrt{v} x_{6} \wedge \xi_{1}}{\sqrt{u}}-\sqrt{u} \sqrt{v} x_{6} \wedge \xi_{1} \\
& \left.\frac{\sqrt{v} x_{6} \wedge \xi_{2}}{\sqrt{u}}-\frac{\sqrt{u} x_{5} \wedge x_{6} \wedge \xi_{1} \wedge \xi_{2}}{\sqrt{v}}-\frac{\sqrt{v} x_{5} \wedge x_{6} \wedge \xi_{1} \wedge \xi_{2}}{\sqrt{u}}+\sqrt{u} \sqrt{v} x_{5} \wedge x_{6} \wedge \xi_{1} \wedge \xi_{2}\right]
\end{aligned}
$$

$\mathcal{F} @\left\{\mathrm{X}_{2,4,3,1}[\mathrm{~S}, \mathrm{~T}], \overline{\mathrm{X}}_{3,4,6,5}\right\} \equiv \mathcal{F} @\left\{\mathrm{P}_{1,5}[\mathrm{~T}], \mathrm{P}_{2,6}[\mathrm{~S}]\right\}$
True
$\mathcal{F} @\left\{\overline{\mathrm{X}}_{3,1,2,4}[\mathrm{~S}, \mathrm{~T}], \mathrm{X}_{6,5,3,4}\right\} \equiv \mathcal{F} @\left\{\mathrm{P}_{1,5}[\mathrm{~T}], \mathrm{P}_{6,2}[\mathrm{~S}]\right\}$
True

Reidemeister 1

$\left\{\mathcal{A @}\left\{\mathbf{X}_{3,3,2,1}\right\} \equiv \tau_{1}^{-1 / 2} \mathcal{F} @\left\{\mathbf{P}_{1,2}\right\}, \mathcal{F} @\left\{\mathbf{X}_{1,2,3,3}\right\} \equiv \tau_{1}^{1 / 2} \mathcal{A} @\left\{\mathbf{P}_{1,2}\right\}\right.$,
$\left.\mathcal{F} @\left\{\bar{X}_{1,3,3,2}\right\} \equiv \tau_{1}^{-1 / 2} \mathcal{A} @\left\{\mathbf{P}_{1,2}\right\}, \mathcal{F} @\left\{\bar{X}_{3,1,2,3}\right\} \equiv \tau_{1}^{1 / 2} \mathcal{F} @\left\{\mathbf{P}_{1,2}\right\}\right\}$
\{True, True, True, True \}
(So we have an invariant, up to rotation numbers).

Overcrossings Commute but Undercrossings don't

$\mathcal{F} @\left\{\mathrm{X}_{2,7,5,1}, \mathrm{X}_{3,4,6,7}\right\} \equiv \mathcal{F} @\left\{\mathrm{X}_{3,7,6,1}, \mathrm{X}_{2,4,5,7}\right\}$
True
$\mathcal{F} @\left\{\overline{\mathbf{X}}_{1,2,7,5}, \overline{\mathrm{X}}_{7,3,4,6}\right\} \equiv \mathcal{F} @\left\{\overline{\mathrm{X}}_{1,3,7,6}, \overline{\mathrm{X}}_{7,2,4,5}\right\}$
False

Conway's Second Set of Identities

(see [Co])

$\mathcal{F} @\left\{X_{2,5,4,1}\left[T_{2}, T_{1}\right], X_{3,7,6,5}\left[T_{3}, T_{1}\right], X_{6,9,8,4}\right\} \equiv$ $\mathcal{F} @\left\{X_{3,5,4,2}\left[T_{3}, T_{2}\right], X_{4,6,8,1}\left[T_{3}, T_{1}\right], X_{5,7,9,6}\right\}$
True

The Relation with the Multivariable Alexander Polynomial

$$
\begin{aligned}
& \text { MVA }=u^{-1 / 2} v^{-1 / 2} w^{-1 / 2}(u-1)(v-1)(w-1) ; \\
& \begin{array}{l}
\text { A }=\left\{\bar{x}_{1,12,2,13}[u, v], \bar{x}_{13,2,6,3}, x_{8,4,9,3}, x_{4,1 e, 5,9}, x_{6,17,7,16}[v, w],\right. \\
\left.\quad x_{15,8,16,7}, \bar{x}_{14,10,15,11}, \bar{x}_{11,17,12,14}\right\} / / \mathcal{F} / / \text { Last// Factor }
\end{array} \\
& \frac{(-1+u)^{2}(-1+v)(-1+w)\left(\text { Wedge }[]-x_{5} \wedge \xi_{1}\right)}{u v} \\
& \text { A } \left.=u^{-1 / 2}(u-1) u^{\ominus} v^{-1 / 2} w^{1 / 2} \text { MVA (Wedge }[\wedge]-x_{5} \wedge \xi_{1}\right) \\
& \text { True }
\end{aligned}
$$

The Conway Relation (see [Co])
$\mathcal{F} @\left\{\mathrm{X}_{2,3,4,1}[\mathrm{~T}, \mathrm{~T}]\right\}-\mathcal{F} @\left\{\overline{\mathrm{X}}_{1,2,3,4}[\mathrm{~T}, \mathrm{~T}]\right\} \equiv\left(\mathrm{T}^{-1 / 2}-\mathrm{T}^{1 / 2}\right) \mathcal{H} @\left\{\mathrm{P}_{1,4}[\mathrm{~T}], \mathrm{P}_{2,3}[\mathrm{~T}]\right\}$ True

Virtual versions (Archibald, [Ar])

$$
\begin{aligned}
& \text { (3) } \\
& \mathcal{F} @\left\{\mathbf{X}_{2,3,4,1}\right\}+\mathcal{F} @\left\{\overline{\mathbf{X}}_{2,1,4,3}\right\} \equiv\left(\tau_{1}^{1 / 2}+\tau_{1}^{-1 / 2}\right) \mathcal{H} @\left\{\mathrm{P}_{1,3}, \mathrm{P}_{2,4}\right\} \\
& \text { True } \\
& \mathcal{A} @\left\{\overline{\mathbf{X}}_{1,2,3,4}\right\}+\mathcal{A} @\left\{\mathbf{X}_{1,4,3,2}\right\} \equiv\left(\tau_{2}^{1 / 2}+\tau_{2}^{-1 / 2}\right) \mathcal{A} @\left\{\mathbf{P}_{1,3}, \mathbf{P}_{2,4}\right\} \\
& \text { True }
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{F} @\left\{\mathrm{X}_{2,4,3,1}[\mathrm{v}, \mathrm{u}], \mathrm{X}_{4,6,5,3}\right\}+\mathcal{F} @\left\{\overline{\mathrm{X}}_{1,2,4,3}[\mathrm{u}, \mathrm{v}], \overline{\mathrm{X}}_{3,4,6,5}\right\} \equiv \\
& \left(u^{1 / 2} v^{1 / 2}+u^{-1 / 2} v^{-1 / 2}\right) \mathcal{F} @\left\{P_{1,5}[u], P_{2,6}[v]\right\} \\
& \text { True } \\
& \mathcal{F} @\left\{\bar{X}_{4,1,6,3}[v, u], \bar{X}_{3,2,5,4}\right\}+\mathcal{F} @\left\{X_{1,6,3,4}[u, v], X_{2,5,4,3}\right\} \equiv \\
& \left(u^{1 / 2} v^{-1 / 2}+u^{-1 / 2} v^{1 / 2}\right) \mathcal{F} @\left\{P_{1,5}[u], P_{2,6}[v]\right\}
\end{aligned}
$$

$\mathcal{F} @\left\{\mathrm{X}_{6,4,9,1}, \overline{\mathrm{x}}_{4,5,7,8}, \overline{\mathrm{X}}_{2,3,5,6}\right\}+\mathcal{F} @\left\{\mathrm{X}_{2,4,5,1}, \overline{\mathrm{X}}_{4,3,7,6}, \mathrm{X}_{6,8,9,5}\right\} \equiv$ $\mathcal{F} @\left\{\overline{\mathbf{x}}_{1,6,4,9}, \mathbf{X}_{5,7,8,4}, \mathbf{X}_{3,5,6,2}\right\}+\mathcal{F} @\left\{\overline{\mathbf{x}}_{1,2,4,5}, \mathrm{X}_{3,7,6,4}, \overline{\mathbf{x}}_{5,6,8,9}\right\}$

True

Virtual version (Archibald, [Ar])

Virtual versions (Archibald, [Ar])

$\mathcal{A} @\left\{\mathrm{X}_{3,2,3,1}[\mathrm{~S}, \mathrm{~T}]\right\} \equiv\left(\mathrm{T}^{-1 / 2}-\mathrm{T}^{1 / 2}\right) \mathcal{F} @\left\{\mathrm{P}_{1,2}[\mathrm{~T}]\right\}$
True
$\mathcal{F} @\left\{X_{1,3,2,3}\right\}$
$\mathcal{A}\left[\{1\},\{2\},\langle | \xi_{1} \rightarrow \tau_{1}, \mathbf{x}_{2} \rightarrow \tau_{1}| \rangle, 0\right]$

The Naik-Stanford Double Delta Move

Timing[$\mathcal{F} @\left\{\mathrm{X}_{6,10,28,24[\mathrm{w}, \mathrm{v}]}, \overline{\mathrm{X}}_{28,3,29,19}[\mathrm{w}, \mathrm{v}], \mathrm{X}_{26,28,27,19}[\mathrm{w}, \mathrm{v}], \overline{\mathrm{X}}_{27,23,11,24}[\mathrm{w}, \mathrm{v}]\right.$, $X_{1,12,13,30}[u, w], \bar{x}_{13,5,14,25}[u, w], X_{17,26,18,25}[u, w], \bar{x}_{18,29,8,30}[u, w]$,
$\left.x_{4,7,22,15}[v, u], \bar{x}_{22,2,23,16}[v, u], x_{20,17,21,16}[v, u], \bar{x}_{21,14,9,15}[v, u]\right\} \equiv$ $\mathcal{F} @\left\{\mathrm{X}_{5,9,25,21}[\mathrm{w}, \mathrm{v}], \overline{\mathrm{X}}_{25,4,26,22}[\mathrm{w}, \mathrm{v}], \mathrm{X}_{29,23,30,22}[\mathrm{w}, \mathrm{v}], \overline{\mathrm{X}}_{30,20,12,21}[\mathrm{w}, \mathrm{v}]\right.$, $x_{2,11,16,27}[u, w], \bar{x}_{16,6,17,28}[u, w], x_{14,29,15,28}[u, w], \bar{x}_{15,26,7,27}[u, w]$, $\left.\left.X_{3,8,19,18}[v, u], \bar{X}_{19,1,20,13}[v, u], X_{23,14,24,13}[v, u], \bar{X}_{24,17,18,18}[v, u]\right\}\right]$ \{251.156, True \}

Virtual Version 2 (Archibald, [Ar])

$\mathcal{F} @\left\{\bar{X}_{2 \theta, 1,10,13}[v, u], X_{3,14,19,13}[v, u], X_{14,11,15,21}[u, w], \bar{X}_{15,6,7,22}[u, w]\right.$,
$\left.X_{2,12,16,22}[u, w], \bar{x}_{16,5,17,21}[u, w], \bar{x}_{19,17,9,18}[v, u], x_{4,8,28,18}[v, u]\right\} \equiv$ $\mathcal{A} @\left\{\mathrm{X}_{1,11,13,21}[\mathrm{u}, \mathrm{w}], \overline{\mathrm{x}}_{13,6,14,22}[\mathrm{u}, \mathrm{w}], \overline{\mathrm{X}}_{20,14,10,15}[\mathrm{v}, \mathrm{u}], \mathrm{X}_{3,7,19,15}[\mathrm{v}, \mathrm{u}]\right.$,
$\left.\bar{X}_{19,2,9,16}[v, u], X_{4,17,20,16}[v, u], X_{17,12,18,22}[u, w], \bar{x}_{18,5,8,21}[u, w]\right\}$

$$
\begin{aligned}
& g \times g^{*} \quad r=b \otimes 1+y \otimes x \\
& \text { " } \\
& \langle a, x\rangle[a, x]=x \quad[a, y\rangle=0 \\
& {[b,-]=0 \quad[x, y]=b} \\
& \uparrow \text { y,s } R^{4}=e^{t(\theta n+y \circ 0 x)}
\end{aligned}
$$

$$
\begin{aligned}
& \rho(x, y) \\
& 1 \cup E\left(x_{1}, y_{1}\right) \otimes \varnothing\left(x_{2}, y_{2}\right) \rightarrow \\
& E\left(x_{1}, x_{2}, y, u v_{2}\right) \\
& 2 x \in X, y \in Y \quad c_{y, x} B(X, Y) \rightarrow E(C Y\{x\}, \\
& 4(233)
\end{aligned}
$$

Proof．Recall that $c_{x, \xi}:(1, \xi, x, x \xi) w^{\prime} \mapsto(1,0,0,1) w^{\prime}$ ，write
$\lambda=\mu+\eta x+\xi y+\alpha \xi x$ ，and ponder $\mathbb{e}^{\lambda}=$

Unfortunately， $\operatorname{dim} \mathcal{A}(\mathcal{X}, X)=\operatorname{dim} \Lambda(\mathcal{X}, X)=4^{|X|}$ is big．Fortunately，we have the following theorem，a version of one of the main results in Halacheva＇s thesis，［Hal，Has］：
Theorem．Working in $\Lambda(\mathcal{X} \cup X)$ ，if $w=\omega e^{\lambda}$ is a balanced Gaussian（namely，a
$\ldots+\frac{1}{k!} \underbrace{(\mu+\eta x+\xi y+\alpha \xi x)(\mu+\eta x+\xi y+\alpha \xi x) \cdots(\mu+\eta x+\xi y+\alpha \xi x)}_{k \text { factors }}+\ldots$.
scalar ω times the exponential of a quadratic $\lambda=\sum_{\zeta \in \mathcal{X}, z \in X} \alpha_{\zeta, z} \zeta z$ ），then generically so is $c_{x, \xi} \mathbb{e}^{\lambda}$ ．
（This is great news！The space of balanced quadratics is only $|\mathcal{X} \| X|$－dimensional！）

Then $c_{\chi, \xi \mathbb{e}^{\lambda}}$ has three contributions：
$-\mathbb{e}^{\mu}$ ，from the term proportional to 1 （namely，independent of ξ and x ）in \mathbb{e}^{λ}
$--\alpha \mathbb{e}^{\mu}$ ，from the term proportional to $x \xi$ ，where the x and the ξ come from the same factor above．
$\eta y \mathbb{e}^{\mu}$ ，from the term proportional to $x \xi$ ，where the x and the ξ come from different factors above．

「－calculus．

6．An Implementation of Γ ．

Thus we have an almost－always－defined＂Γ－calculus＂：a contraction algebra morphism $\underline{\mathcal{T}(\mathcal{X}, X)} \rightarrow R \times(\underbrace{\mathcal{X} \otimes_{R / R} X})$ whose behaviour under contractions is given by

$$
c_{x, \xi}(\omega, \lambda=\mu+\eta x+\xi y+\alpha \xi x)=((1-\alpha) \omega, \mu+\eta y /(1-\alpha))
$$

（ Γ is fully defined on pure tar \int gees－tangles without closed components－and hence on long knots）．

If I didn＇t implement I wouldn＇t believe myself．
Written in Mathematica［Wo］，available as the notebook Gamma．nb at http：／／drorbn．net／mo21／ap．Code lines are highlighted in grey，demo lines are plain．We start with canonical forms for quadratics with rational function coefficients：
$\operatorname{CCF}\left[\mathcal{E}_{-}\right]:=$Factor $[\mathcal{E}]$ ；
CF $\left[\varepsilon_{-}\right]:=\operatorname{Module}\left[\left\{\mathrm{vs}=\operatorname{Union@Cases}\left[\varepsilon,(\xi \mid x)_{-}, \infty\right]\right\}\right.$ ，
Total［（CCF［\＃【2』］（Times＠＠vs $\left.\left.{ }^{\# \llbracket 1 \rrbracket}\right)\right) \& / @$ CoefficientRules［ δ, vs］］］；

Multiplying and comparing Γ objects：

```
\Gamma/: r[is1_, os1_, cs1_, \omega1_, \lambda1_] \ [[is2_, os2_, cs2_, \omega2_, \lambda2_] :=
r[is1Uis2, os1Uos2, Join[cs1, cs2], \omega1 \omega2, \lambda1 + \lambda2]
\Gamma /: \Gamma[is1_, os1_, _, \omega1_, \lambda1_] \equiv\Gamma[is2_, os2_, _, \omega2_, \lambda2_] :=
    TrueQ[(Sort@is1 === Sort@is2) ^(Sort@os1 === Sort@os2) ^
    Simplify[\omega1 == \omega2] ^ CF@ \lambda1 == CF@ @2]
```

No rules for linear operations！

The crossings and the point：

```
\Gamma[\mp@subsup{X}{i-}{\prime},\mp@subsup{j}{-}{\prime},\mp@subsup{k}{-}{\prime},\mp@subsup{L}{-}{\prime}[\mp@subsup{S}{-}{\prime},\mp@subsup{T}{-}{\prime}]]:=\Gamma[{l,i},{j,k},\langle|\mp@subsup{\xi}{i}{}->S,\mp@subsup{\mathbf{x}}{j}{}->T,\mp@subsup{\mathbf{x}}{k}{}->S,\mp@subsup{\xi}{L}{}->T|\rangle,
    T-1/2},\operatorname{CF}[{\mp@subsup{\xi}{l}{\prime},\mp@subsup{\xi}{i}{\prime}}\cdot(\begin{array}{cc}{1}&{1-T}\\{0}&{T}\end{array})\cdot{\mp@subsup{x}{j}{},\mp@subsup{x}{k}{\prime}}]]
```



```
    T/2},\operatorname{CF}[{\mp@subsup{\xi}{i}{},\mp@subsup{\xi}{j}{}}\cdot(\begin{array}{cc}{\mp@subsup{T}{}{-1}}&{0}\\{1-\mp@subsup{T}{}{-1}}&{1}\end{array})\cdot{\mp@subsup{\textrm{X}}{k}{},\mp@subsup{\textrm{X}}{l}{}}]]]
```



```
\Gamma[\mp@subsup{\overline{\mathbf{X}}}{\mp@subsup{i}{-}{\prime},\mp@subsup{j}{-}{\prime},\mp@subsup{k}{-}{\prime},\mp@subsup{\iota}{-}{\prime}]}{}]:=\Gamma[\mp@subsup{\overline{\mathbf{X}}}{i,j,k,l}{}[\mp@subsup{\tau}{i}{},\mp@subsup{\tau}{j}{\prime}]];
```



```
\Gamma[\mp@subsup{\mathbf{P}}{\mp@subsup{i}{-}{\prime}}{\prime}\mp@subsup{j}{-}{\prime}]:=\Gamma[\mp@subsup{\mathbf{P}}{i,j}{\prime}[\mp@subsup{\tau}{i}{\prime}]];
```


Automatic intelligent contractions：

$\Gamma\left[\left\{\gamma_{-} \Gamma\right\}\right]:=\mathbf{c}[\gamma]$ ；
$\Gamma\left[\left\{\gamma 1_{-} \Gamma, \gamma s_{-} \Gamma\right\}\right]:=\operatorname{Module}[\{\gamma 2\}$ ， $\gamma^{2}=$ First＠MaximalBy $[\{\gamma s\}$ ，Length $[\gamma 1 \llbracket 1 \rrbracket \cap \# \llbracket 2 \rrbracket]+$ Length $[\gamma 1 \llbracket 2 \rrbracket \cap \# \llbracket 1 \mathbb{\rrbracket}]$ ］； $\Gamma[J o i n[\{c[\gamma 1 \gamma 2]\}$ ，DeleteCases［\｛ $\{\gamma\}, \gamma 2]]]]$
$\Gamma[$ Os＿List］：＝$\Gamma[\Gamma / @$ Os］

$$
\begin{aligned}
& \bar{X}_{3,1,4,7}^{u v} X_{1,4,5,8}^{u n} \bar{X}-/ / C_{3, y, x_{y}} \ldots
\end{aligned}
$$

$$
\frac{[11}{\left.\frac{111}{3} \right\rvert\,}
$$

```
Conversions }\mathcal{A}\leftrightarrow\Gamma
\Gamma@\mathcal{A[is_, OS_, CS_, w_] := Module[{i, j, w = Coefficient[w, Wedge[^]]},}
        \Gamma[is,os, cs, \omega, Sum[Cancel[-Coefficient[\omega, ( }\mp@subsup{\mathbf{j}}{j}{\wedge}^\mp@subsup{\xi}{i}{}] \mp@subsup{\xi}{i}{}\mp@subsup{\mathbf{x}}{j}{\prime}/\omega]
            {i, is}, {j, os}]]
    ];
```



```
    \mathcal{A}[is,os, cs, Expand [\omegaWExp[Expand[ }\lambda]/\cdot\mp@subsup{\xi}{\mp@subsup{a}{-}{}}{}\mp@subsup{\mathbf{x}}{\mp@subsup{b}{-}{\prime}}{}:->\mp@subsup{\xi}{a}{}\wedge\mp@subsup{x}{b}{}]]]
The conversions are inverses of each other:
\Gamma[{1, 2, 3}, {1, 2, 3}, { ( 
    \omega, a}\mp@subsup{a}{11}{}\mp@subsup{x}{1}{}\mp@subsup{\varepsilon}{1}{}+\mp@subsup{a}{12}{}\mp@subsup{x}{2}{}\mp@subsup{\varepsilon}{1}{}+\mp@subsup{a}{13}{}\mp@subsup{x}{3}{}\mp@subsup{\varepsilon}{1}{}+\mp@subsup{a}{21}{}\mp@subsup{x}{1}{}\mp@subsup{\varepsilon}{2}{}+\mp@subsup{a}{22}{}\mp@subsup{x}{2}{}\mp@subsup{\varepsilon}{2}{}+\mp@subsup{a}{23}{}\mp@subsup{x}{3}{}\mp@subsup{\varepsilon}{2}{}+\mp@subsup{a}{31}{}\mp@subsup{x}{1}{}\mp@subsup{\varepsilon}{3}{}
        a}\mp@subsup{a}{32}{}\mp@subsup{x}{2}{}\mp@subsup{\xi}{3}{}+\mp@subsup{a}{33}{}\mp@subsup{x}{3}{}\mp@subsup{\xi}{3}{}]
\Gamma@\mathcal{A@\gamma == \gamma}
True
The conversions commute with contractions：
「＠ \(\mathbf{C}_{3,3} @ \mathcal{F} @ \gamma \equiv \mathbf{C}_{3,3} @ \gamma\)
True
```


Conway＇s Third Identity

Sorry，「 has nothing to say about that．．．＇

References

回 J．Archibald，The Multivariable Alexander Polynomial on Tangles，University of Toronto Ph．D．thesis，2010，http：／／drorbn．net／mo21／AT

J．H．Conway，An Enumeration of Knots and Links，and some of their Algebraic Properties，Computational Problems in Abstract Algebra（Proc． Conf．，Oxford，1967），Pergamon，Oxford，1970，329－－358．

葍 Z．Dancso，I．Halacheva，and M．Robertson，Circuit Algebras are Wheeled Props，J．Pure and Appl．Alg．，to appear，arXiv：2009．09738．

I．Halacheva，Alexander Type Invariants of Tangles，Skew Howe Duality for Crystals and The Cactus Group，University of Toronto Ph．D．thesis，2016， http：／／drorbn．net／mo21／HT．

嗇 I．Halacheva，Alexander Type Invariants of Tangles，arXiv：1611．09280

Timing $\left[\Gamma @\left\{X_{6,10,28,24}[\mathrm{w}, \mathrm{v}], \bar{X}_{28,3,29,19}[\mathrm{w}, \mathrm{v}], \mathrm{X}_{26,20,27,19[\mathrm{w}, \mathrm{v}],} \bar{X}_{27,23,11,24}[\mathrm{w}, \mathrm{v}]\right.\right.$ ， $X_{1,12,13,30}[u, w], \bar{X}_{13,5,14,25}[u, w], X_{17,26,18,25}[u, w], \bar{X}_{18,29,8,30}[u, w]$ ， $\left.X_{4,7,22,15}[v, u], \bar{X}_{22,2,23,16}[v, u], X_{20,17,21,16}[v, u], \bar{X}_{21,14,9,15}[v, u]\right\} \equiv$ $\Gamma @\left\{X_{5,9,25,21}[\mathrm{w}, \mathrm{v}], \bar{X}_{25,4,26,22}[\mathrm{w}, \mathrm{v}], X_{29,23,30,22}[\mathrm{w}, \mathrm{v}], \bar{X}_{30,20,12,21}[\mathrm{w}, \mathrm{v}]\right.$ ， $X_{2,11,16,27}$［u，w］， $\bar{X}_{16,6,17,28}$［u，w］，$X_{14,29,15,28[u, w],} \bar{X}_{15,26,7,27}[u, w]$ ， $\left.\left.X_{3,8,19,18}[v, u], \bar{X}_{19,1,20,13}[v, u], X_{23,14,24,13}[v, u], \bar{X}_{24,17,10,18}[v, u]\right\}\right]$
\｛1．28125，True

What I still don＇t understand．

－What becomes of $c_{x, \xi} \mathbb{e}^{\lambda}$ if we have to divide by 0 in order to write it again as an exponentiated quadratic？Does it still live within a very small subset of $\Lambda(\mathcal{X} \sqcup X)$ ？
－How do cablings and strand reversals fit within \mathcal{A} ？
－Are there＂classicality conditions＂satisfied by the invariants of classica tangles（as opposed to virtual ones）？

R－M．Markl，S．Merkulov，and S．Shadrin，Wheeled PROPs，Graph Complexes and the Master Equation，J．Pure and Appl．Alg．213－4（2009）496－535， arXiv：math／0610683

E J．Murakami，A State Model for the Multivariable Alexander Polynomial， Pacific J．Math．157－1（1993）109－－135．

E S．Naik and T．Stanford，A Move on Diagrams that Generates S－Equivalence of Knots，J．Knot Theory Ramifications 12－5（2003）717－－724，arXiv： math／9911005

睩 Wolfram Language \＆System Documentation Center， https：／／reference．wolfram．com／language／．

