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Abstract. As an algebraic knot theorist, I still don’t understand the Alexander
polynomial. There are two conventions as for how to present tangle theory in
algebra: one may name the strands of a tangle, or one may name their ends. The
distinction might seem too minor to matter, yet it leads to a completely different
view of the set of tangles as an algebraic structure. There are lovely formulas for
the Alexander polynomial as viewed from either perspective, and they even agree
where they meet. But the “strands” formulas know about strand doubling while
the “ends” ones don’t, and the “ends” formulas know about skein relations while
the “strands” ones don’t. There ought to be a common generalization, but I don’t
know what it is.

http://drorbn.net/mo21


Thanks for inviting me to Moscow! As most of you have never seen it, here’s a
picture of the lecture room:

If you can, please turn your video on! (And mic, whenever needed).



I use talks to self-motivate; so often I choose a topic and write an abstract when I
know I can do it, yet when I haven’t done it yet. This time it turns out my abstract
was wrong — I’m still uncomfortable with the Alexander polynomial, but in slightly
different ways than advertised two slides before.
My discomfort.
I I can compute the multivariable Alexander polynomial real fast:

−→ (uvw)−1/2(u − 1)(v − 1)(w − 1).

I But I can only prove “skein relations” real slow:

+ +=



This talk is to a large extent an elucidation of the Ph.D. theses of my former
students Jana Archibald and Iva Halacheva. See [Ar, Ha1, Ha2].

Also thanks to Roland van der Veen for comments.

A technicality. There’s supposed to be fire alarm testing in my building today.
Don’t panic!



1. Virtual Skein Theory Heaven

Definition. A “Contraction Algebra” assigns a set T (X ,X ) to any pair of finite
sets X = {ξ . . .} and X = {x , . . .} provided |X | = |X |, and has operations

I “Disjoint union” t : T (X ,X )× T (Y,Y )→ T (X t Y,X t Y ), provided
X ∩ Y = X ∩ Y = ∅.

I “Contractions” cx ,ξ : T (X ,X )→ T (X \ ξ,X \ x), provided x ∈ X and ξ ∈ X .

I Renaming operations σξη : T (X t {ξ},X )→ T (X t {η},X ) and
σxy : T (X ,X t {x})→ T (X ,X t {y}).

Subject to axioms that will be specified right after the two examples in the next
three slides.
If R is a ring, a contraction algebra is said to be “R-linear” if all the T (X ,X )’s are
R-modules, if the disjoint union operations are R-bilinear, and if the contractions
cx ,ξ and the renamings σ·· are R-linear.
(Contraction algebras with some further “unit” properties are called “wheeled
props” in [MMS, DHR])
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Example 1. Let T (X ,X ) be the set of virtual tangles with incoming ends (“tails”)
labeled by X and outgoing ends (“heads”) labeled by X , with t and σ·· the obvious
disjoint union and end-renaming operations, and with cx ,ξ the operation of
attaching a head x to a tail ξ while introducing no new crossings.
Note 1. T can be made linear by allowing formal linear combinations.
Note 2. T is finitely presented, with generators the positive and negative
crossings, and with relations the Reidemeister moves! (If you want, you can take
this to be the definition of “virtual tangles”).





Note 2. A contraction algebra morphism out of T is an invariant of virtual tangles
(and hence of virtual knots and links) and would be an ideal tool to prove Skein
Relations:
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Example 2. Let V be a finite dimensional vector space and set
V(X ,X ) := (V ∗)⊗X ⊗ V⊗X , with t = ⊗, with σ·· the operation of renaming a
factor, and with cx ,ξ the operation of contraction: the evaluation of tensor factor ξ
(which is a V ∗) on tensor factor x (which is a V ).



Axioms. One axiom is primary and interesting,

I Contractions commute! Namely, cx ,ξ�cy ,η = cy ,η�cx ,ξ (or in old-speak,
cy ,η ◦ cx ,ξ = cx ,ξ ◦ cy ,η).

And the rest are just what you’d expect:

I t is commutative and associative, and it commutes with c·,· and with σ··
whenever that makes sense.

I c·,· is “natural” relative to renaming: cx ,ξ = σxy�σ
ξ
η�cy ,η.

I σξξ = σxx = Id , σξη�σηζ = σξζ , σxy�σ
y
z = σxz , and renaming operations commute

where it makes sense.



Comments.

I We can relax |X | = |X | at no cost.

I We can lose the distinction between X and X and get “circuit algebras”.

I There is a “coloured version”, where T (X ,X ) is replaced with T (X ,X , λ, l)
where λ : X → C and l : X → C are “colour functions” into some set C of
“colours”, and contractions cx ,ξ are alllowed only if x and ξ are of the same
colour, l(x) = λ(ξ). In the world of tangles, this is “coloured tangles”.



2. Heaven is a Place on Earth

(A version of the main results of Archibald’s thesis, [Ar]).

Let us work over the base ring R = Q[{T±1/2 : T ∈ C}]. Set

A(X ,X ) := {w ∈ Λ(X t X ) : degX w = degX w}

(so in particular the elements of A(X ,X ) are all of even degree). The union
operation is the wedge product, the renaming operations are changes of variables,
and cx ,ξ is defined as follows. Write w ∈ A(X ,X ) as a sum of terms of the form
uw ′ where u ∈ Λ(ξ, x) and w ′ ∈ A(X \ ξ,X \ x), and map u to 1 if it is 1 or xξ
and to 0 is if is ξ or x :

1w ′ 7→ w ′, ξw ′ 7→ 0, xw ′ 7→ 0, xξw ′ 7→ w ′.

Proposition. A is a contraction algebra.



Alternative Formulations.

I cx ,ξw = ιξιxexξw , where ι· denotes interior multiplication.

I Using Fermionic integration, cx ,ξw =

∫
exξw dξdx .

I cx ,ξ represents composition in exterior algebras! With X ∗ := {x∗ : x ∈ X}, we
have that Hom(ΛX ,ΛY ) ∼= Λ(X ∗ t X ) and the following square commutes:

Hom(ΛX ,ΛY )⊗ Hom(ΛY ,ΛZ )
� //

OO

��

Hom(ΛX ,ΛZ )
OO

��
Λ(X ∗ t Y t Y ∗ t Z )

∏
y∈Y cy,y∗ // Λ(X ∗,Z )

I Similarly, Λ(X t X ) ∼= (H∗)⊗X ⊗ H⊗X where H is a 2-dimensional “state
space” and H∗ is its dual. Under this identification, cx ,ξ becomes the
contraction of an H factor with an H∗ factor.



We construct a morphism of coloured contraction algebras A : T → A by declaring

Xijkl [S ,T ] 7→ T−1/2 exp

((
ξl ξi

)(1 1− T
0 T

)(
xj
xk

))
X̄ijkl [S ,T ] 7→ T 1/2 exp

((
ξi ξj

)( T−1 0
1− T−1 1

)(
xk
xl

))
Pij [T ] 7→ exp(ξixj)

with

ST S T Tl i

jk

i j

kl

i

j

Xijkl [S ,T ] X̄ijkl [S ,T ] Pij [T ]

(Note that the matrices appearing in these formulas are the Burau matrices).



Theorem.

If D is a classical link diagram with k components coloured T1, . . . ,Tk whose first
component is open and the rest are closed, if MVA is the multivariable Alexander
polynomial of the closure of D (with these colours), and if ρj is the
counterclockwise rotation number of the jth component of D, then

A(D) = T
−1/2
1 (T1 − 1)

∏
j

T
ρj/2
j

 ·MVA · (1 + ξin ∧ xout).

(A vanishes on closed links).



3. An Implementation of A

If I didn’t implement I wouldn’t believe myself.

Written in Mathematica [Wo], available as the notebook Alpha.nb at
http://drorbn.net/mo21/ap. Code lines are highlighted in grey, demo lines are
plain. We start with an implementation of elements (“Wedge”) of exterior algebras,
and of the wedge product (“WP”):

WP[Wedge[u___], Wedge[v___]] := Signature[{u, v}]*Wedge @@ Sort[{u, v}];

WP[0, _] = WP[_, 0] = 0;

WP[A_, B_] :=

Expand[Distribute[A ** B] /.

(a_. * u_Wedge) ** (b_. * v_Wedge) ⧴ a b WP[u, v]];

WP[Wedge[ ] + Wedge[a] - 2 b⋀a, Wedge[ ] - 3 Wedge[b] + 7 c⋀d]

Wedge[] + Wedge[a] - 3 Wedge[b] - a⋀b + 7 c⋀d + 7 a⋀c⋀d + 14 a⋀b⋀c⋀d

http://drorbn.net/mo21/ap


We then define the exponentiation map in exterior algebras (“WExp”) by summing
the series and stopping the sum once the current term (“t”) vanishes:

WExp[A_] := Module[{s = Wedge[ ], t = Wedge[ ], k = 0},

While[t =!= 0, s += (t = Expand[WP[t, A]/(++k)])]; s]

WExp[a⋀b + c⋀d + e⋀f]

Wedge[] + a⋀b + c⋀d + e⋀f + a⋀b⋀c⋀d + a⋀b⋀e⋀f + c⋀d⋀e⋀f + a⋀b⋀c⋀d⋀e⋀f



Contractions!

cx_,y_[w_Wedge] := Module{i, j},

{i} = FirstPosition[w, x, {0}]; {j} = FirstPosition[w, y, {0}];

w (i ⩵ 0) ∧ (j ⩵ 0)

(-1)i+j+If[i>j,0,1] Delete[w, {{i}, {j}}] (i > 0) ∧ (j > 0)

;

cx_,y_[ℰ_] := ℰ /. w_Wedge ⧴ cx,y[w]

WExp[a⋀b + 2 c⋀d]

cd,c@WExp[a⋀b + 2 c⋀d]

Wedge[] + a⋀b + 2 c⋀d + 2 a⋀b⋀c⋀d

-Wedge[] - a⋀b



STl i

jk

Xijkl [S ,T ]

A[is,os,cs,w] is also a container for the values of the A-invariant
of a tangle. In it, is are the labels of the input strands, os are the
labels of the output strands, cs is an assignment of colours (namely,
variables) to all the ends {ξi}i∈is t {xj}j∈os, and w is the “payload”:
an element of Λ ({ξi}i∈is t {xj}j∈os).

[Xi_,j_,k_,l_[S_, T_]] := {l, i}, {j, k}, ξi → S, xj → T, xk → S, ξl → T,

ExpandT-1/2 WExpExpand{ξl, ξi}.
1 1 - T

0 T
.{xj, xk} /. ξa_ xb_ ⧴ ξa ⋀xb;

[X1,2,3,4[u, v]]

{4, 1}, {2, 3}, ξ1 → u, x2 → v, x3 → u, ξ4 → v,

Wedge[]

v
-
x2 ⋀ξ4

v
- v x3 ⋀ξ1 -

x3 ⋀ξ4

v
+ v x3 ⋀ξ4 + v x2 ⋀x3 ⋀ξ1 ⋀ξ4

[Xi_,j_,k_,l_] := Xi,j,k,l[τi, τj];



The negative crossing and the “point”:

S T Ti j

kl

i

j

X̄ijkl [S ,T ] Pij [T ]

Xi_,j_,k_,l_[S_, T_] := {i, j}, {k, l}, ξi → S, ξj → T, xk → S, xl → T,

ExpandT1/2 WExpExpand{ξi, ξj}.
T-1 0

1 - T-1 1
.{xk, xl} /. ξa_ xb_ ⧴ ξa ⋀xb;

[Xi_,j_,k_,l_] := [Xi,j,k,l[τi, τl]];

[Pi_,j_[T_]] := [{i}, {j}, ξi → T, xj → T, WExp[ξi ⋀xj]];

[Pi_,j_] := [Pi,j[τi]];



The linear structure on A’s:
 /: α_×[is_, os_, cs_, w_] := [is, os, cs, Expand[α w]]

 /: [is1_, os1_, cs1_, w1_] + [is2_, os2_, cs2_, w2_] /;

(Sort@is1 ⩵ Sort@is2) ∧ (Sort@os1 ⩵ Sort@os2) ∧

(Sort@Normal@cs1 ⩵ Sort@Normal@cs2) := [is1, os1, cs1, w1 + w2]

Deciding if two A’s are equal:

 /: [is1_, os1_, _, w1_] ≡ [is2_, os2_, _, w2_] :=

TrueQ[(Sort@is1 === Sort@is2) ∧ (Sort@os1 === Sort@os2) ∧

PowerExpand[w1 ⩵ w2]]



1 2

3 4
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S T
The union operation on A’s (implemented as “multiplication”):

 /: [is1_, os1_, cs1_, w1_]×[is2_, os2_, cs2_, w2_] :=

[is1 ⋃ is2, os1 ⋃ os2, Join[cs1, cs2], WP[w1, w2]]

Short[X2,4,3,1[S, T]]×[X3,4,6,5], 5

{1, 2, 3, 4}, {3, 4, 5, 6},

ξ2 → S, x4 → T, x3 → S, ξ1 → T, ξ3 → τ3, ξ4 → τ4, x6 → τ3, x5 → τ4,
τ4 Wedge[]

T
-

τ4 x3 ⋀ξ1

T
+ T τ4 x3 ⋀ξ1 - T τ4 x3 ⋀ξ2 -

τ4 x4 ⋀ξ1

T
-

τ4 x5 ⋀ξ4

T
-

x6 ⋀ξ3

T τ4

+40 +
T x3 ⋀x5 ⋀x6 ⋀ξ1 ⋀ξ3 ⋀ξ4

τ4

-
T x3 ⋀x5 ⋀x6 ⋀ξ2 ⋀ξ3 ⋀ξ4

τ4

-

x4 ⋀x5 ⋀x6 ⋀ξ1 ⋀ξ3 ⋀ξ4

T τ4

+
T x3 ⋀x4 ⋀x5 ⋀x6 ⋀ξ1 ⋀ξ2 ⋀ξ3 ⋀ξ4

τ4





Contractions of A-objects:

ch_,t_@[is_, os_, cs_, w_] := 

DeleteCases[is, t], DeleteCases[os, h], KeyDrop[cs, {xh, ξt}], cx
h
,ξt

[w]

 /. If[MatchQ[cs[ξt], τ_], cs[ξt] → cs[xh], cs[xh] → cs[ξt]];

c4,4[X2,4,3,1[S, T]]×[X3,4,6,5]

{1, 2, 3}, {3, 5, 6}, ξ2 → S, x3 → S, ξ1 → T, ξ3 → τ3, x6 → τ3, x5 → T,

Wedge[] - x3 ⋀ξ1 + T x3 ⋀ξ1 - T x3 ⋀ξ2 - x5 ⋀ξ1 - x6 ⋀ξ1 +
x6 ⋀ξ1

T
-
x6 ⋀ξ3

T
+

T x3 ⋀x5 ⋀ξ1 ⋀ξ2 - x3 ⋀x6 ⋀ξ1 ⋀ξ2 + T x3 ⋀x6 ⋀ξ1 ⋀ξ2 + x3 ⋀x6 ⋀ξ1 ⋀ξ3 -

x3 ⋀x6 ⋀ξ1 ⋀ξ3

T
- x3 ⋀x6 ⋀ξ2 ⋀ξ3 -

x5 ⋀x6 ⋀ξ1 ⋀ξ3

T
- x3 ⋀x5 ⋀x6 ⋀ξ1 ⋀ξ2 ⋀ξ3



Automatic and intelligent multiple contractions:

c@[is_, os_, cs_, w_] := Fold[c#2,#2[#1] &, [is, os, cs, w], is ⋂ os]

[{A_}] := c[A];

[{A1_ , As__ }] := Module[{A2},

A2 = First@MaximalBy[{As}, Length[A1〚1〛 ⋂ #〚2〛] + Length[A1〚2〛 ⋂ #〚1〛] &];

[Join[{c[A1 A2]}, DeleteCases[{As}, A2]]] ]

[s_List] := [ /@ s]

c[X2,4,3,1[S, T]]×[X3,4,6,5]

[{1, 2}, {5, 6}, ξ2 → S, ξ1 → T, x6 → S, x5 → T,

Wedge[] - x5 ⋀ξ1 - x6 ⋀ξ2 - x5 ⋀x6 ⋀ξ1 ⋀ξ2]

@[X2,4,3,1[S, T]], [X3,4,6,5]

[{1, 2}, {5, 6}, ξ2 → S, ξ1 → T, x6 → S, x5 → T,

Wedge[] - x5 ⋀ξ1 - x6 ⋀ξ2 - x5 ⋀x6 ⋀ξ1 ⋀ξ2]



4. Skein relations and evaluations for A

5

34

1

2

6
u

v

@X4,1,6,3[v, u], X3,2,5,4

{1, 2}, {5, 6}, ξ2 → v, x5 → u, ξ1 → u, x6 → v,

u v Wedge[] -
u x5 ⋀ξ1

v
+

u x5 ⋀ξ2

v
- u v x5 ⋀ξ2 +

v x6 ⋀ξ1

u
- u v x6 ⋀ξ1 -

v x6 ⋀ξ2

u
-

u x5 ⋀x6 ⋀ξ1 ⋀ξ2

v
-

v x5 ⋀x6 ⋀ξ1 ⋀ξ2

u
+ u v x5 ⋀x6 ⋀ξ1 ⋀ξ2



Reidemeister 2

=
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T STSS T T S

@X2,4,3,1[S, T], X3,4,6,5 ≡ @{P1,5[T], P2,6[S]}

True

@X3,1,2,4[S, T], X6,5,3,4 ≡ @{P1,5[T], P6,2[S]}

True



Reidemeister 3

=

1 2 3

4
5

6

7
8 9

1 2 3

4

5
6

798

T1 T2 T3 T1 T2 T3

@{X2,5,4,1[T2, T1], X3,7,6,5[T3, T1], X6,9,8,4} ≡

@{X3,5,4,2[T3, T2], X4,6,8,1[T3, T1], X5,7,9,6}

True



Reidemeister 1

1

2

1

2

3
1

2

1

2

3
1

2

1

2

3
1

2

1

2

3
= τ

−1/2
1 = τ

1/2
1 = τ

−1/2
1 = τ

1/2
1

@{X3,3,2,1} ≡ τ1
-1/2

@{P1,2}, @{X1,2,3,3} ≡ τ1
1/2

@{P1,2},

@{X1,3,3,2} ≡ τ1
-1/2

@{P1,2}, @{X3,1,2,3} ≡ τ1
1/2

@{P1,2}

{True, True, True, True}

(So we have an invariant, up to rotation numbers).



The Relation with the Multivariable Alexander Polynomial

1 2 3 4 5

6
7

8

9

10
11

12

13

14

15

16

17

u

v

w

MVA = u-1/2 v-1/2 w-1/2 (u - 1) (v - 1) (w - 1);

A = X1,12,2,13[u, v], X13,2,6,3, X8,4,9,3, X4,10,5,9, X6,17,7,16[v, w],

X15,8,16,7, X14,10,15,11, X11,17,12,14 //  // Last // Factor

(-1 + u)2 (-1 + v) (-1 + w) (Wedge[] - x5 ⋀ξ1)

u v

A ⩵ u-1/2 (u - 1) u0 v-1/2 w1/2 MVA (Wedge[ ] - x5 ⋀ξ1)

True



Overcrossings Commute but Undercrossings don’t

= 6=
1

2 3

4

56

7

1

2 3

4

56
7

1

2 3

56

4

7

1

2 3

56

4

7

@{X2,7,5,1, X3,4,6,7} ≡ @{X3,7,6,1, X2,4,5,7}

True

@X1,2,7,5, X7,3,4,6 ≡ @X1,3,7,6, X7,2,4,5

False



The Conway Relation (see [Co])

1

4 3

2

4

1 2

3

1

4

2

3

− = (T−1/2 − T 1/2)
T T T T T T

@{X2,3,4,1[T, T]} - @X1,2,3,4[T, T] ≡ T-1/2 - T1/2 @{P1,4[T], P2,3[T]}

True



Conway’s Second Set of Identities (see [Co])

+ += ((uv)1/2 + (uv)−1/2) = ((u/v)1/2 + (u/v)−1/2)

5 56

3 4 3 4

1 2 1 2

6

1 2

5 6 5 5

6

34 34

1

2

1

2

6

5 2

1 6
u v u v u v u

v

u

v

u

v

@{X2,4,3,1[v, u], X4,6,5,3} + @X1,2,4,3[u, v], X3,4,6,5 ≡

u1/2 v1/2 + u-1/2 v-1/2 @{P1,5[u], P2,6[v]}

True

@X4,1,6,3[v, u], X3,2,5,4 + @{X1,6,3,4[u, v], X2,5,4,3} ≡

u1/2 v-1/2 + u-1/2 v1/2 @{P1,5[u], P2,6[v]}

True



Virtual versions (Archibald, [Ar])

+ = (τ
1/2
2 + τ

−1/2
2 )+ = (τ

1/2
1 + τ

−1/2
1 )

1 2

3 4 2

1

3

41

2

1

23

4

3

41 2 1 2

3 4 3 4

@{X2,3,4,1} + @{X2,1,4,3} ≡ τ1
1/2

+ τ1
-1/2

 @{P1,3, P2,4}

True

@{X1,2,3,4} + @{X1,4,3,2} ≡ τ2
1/2

+ τ2
-1/2

 @{P1,3, P2,4}

True



Conway’s Third Identity (see [Co])

+ +=
1

2 3

7

89

1

7

89

2 3

1

2 3

7

89

1

7

89

2 3

4

56

4

5 6

4

56

4
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@X6,4,9,1, X4,5,7,8, X2,3,5,6 + @X2,4,5,1, X4,3,7,6, X6,8,9,5 ≡

@X1,6,4,9, X5,7,8,4, X3,5,6,2 + @X1,2,4,5, X3,7,6,4, X5,6,8,9

True



Virtual version (Archibald, [Ar])

+ +=
1

2 3

1

2 3

1

2 3

1

2 3

4

56

4

56 56 56

4 4

7

7

7

7

@X3,7,6,1, X7,2,4,5 + @{X2,4,7,1, X3,5,6,7} ≡

@{X3,7,6,2, X7,4,5,1} + @X1,2,7,5, X3,4,6,7

True



Jun Murakami’s Fifth Axiom (see [Mu])

=
√
S(1−T )√

T

1

2

3

45

1

3

T

T

S

@{X1,4,2,5[T, S], X4,3,5,2} ≡
S (1 - T)

T
@{P1,3[T]}

True



Virtual versions (Archibald, [Ar])

= 0= (T−1/2 − T 1/2)

1

2

1

3

2

1

3

2

T

T

S

T

S

@{X3,2,3,1[S, T]} ≡ T-1/2 - T1/2 @{P1,2[T]}

True

@{X1,3,2,3}

[{1}, {2}, ξ1 → τ1, x2 → τ1, 0]



Jun Murakami’s Third Axiom (see [Mu])

12212112 2211 1122 11 22 ∅
1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

7

89
10
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9 10

11

7 8
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10 11

7 8

9

10 11

7 8 7 8

2112 = @{X3,8,7,2, X7,10,9,1, X10,11,4,9, X8,6,5,11};

1221 = @{X2,8,7,1, X3,10,9,8, X10,6,11,9, X11,5,4,7};

2211 = @{X3,8,7,2, X8,6,9,7, X9,11,10,1, X11,5,4,10};

1122 = @{X2,8,7,1, X8,9,4,7, X3,11,10,9, X11,6,5,10};

11 = @{X2,8,7,1, X8,5,4,7, P3,6}; 22 = @{X3,8,7,2, X8,6,5,7, P1,4};

∅ = @{P1,4, P2,5, P3,6};

g+[z_] := z
1/2

+ z
-1/2; g-[z_] := z

1/2
- z

-1/2;

g+[τ1] g-[τ2] 2112 - g-[τ2] g+[τ3] 1221 - g-[τ3 /τ1] (2211 + 1122) +

g-[τ2 τ3 /τ1] g+[τ3] 11 - g+[τ1] g-[τ1 τ2 /τ3] 22 ≡ g-τ3
2
 τ1

2
 ∅

True



The Naik-Stanford Double Delta Move (see [NS])
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Timing@X6,10,28,24[w, v], X28,3,29,19[w, v], X26,20,27,19[w, v], X27,23,11,24[w, v],

X1,12,13,30[u, w], X13,5,14,25[u, w], X17,26,18,25[u, w], X18,29,8,30[u, w],

X4,7,22,15[v, u], X22,2,23,16[v, u], X20,17,21,16[v, u], X21,14,9,15[v, u] ≡

@X5,9,25,21[w, v], X25,4,26,22[w, v], X29,23,30,22[w, v], X30,20,12,21[w, v],

X2,11,16,27[u, w], X16,6,17,28[u, w], X14,29,15,28[u, w], X15,26,7,27[u, w],

X3,8,19,18[v, u], X19,1,20,13[v, u], X23,14,24,13[v, u], X24,17,10,18[v, u]

{251.156, True}



Virtual Version 1 (Archibald, [Ar])
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@X1,8,11,3[u, v], X11,2,12,7[u, v], X12,10,13,4[u, w], X13,5,6,9[u, w] ≡

@X1,10,11,4[u, w], X11,5,12,9[u, w], X12,8,13,3[u, v], X13,2,6,7[u, v]

True



Virtual Version 2 (Archibald, [Ar])

=

13
14

15

16
17

18
19 20

21
22

1

2

3

4
5

7

8

9

10
11

6

12

11
6

1

8

9
4

5
12

7

2

3 10

13
14

15

16
17

1819
20

21
22

w
w

u

u

v
v

u

u

v
v

w
w

@X20,1,10,13[v, u], X3,14,19,13[v, u], X14,11,15,21[u, w], X15,6,7,22[u, w],

X2,12,16,22[u, w], X16,5,17,21[u, w], X19,17,9,18[v, u], X4,8,20,18[v, u] ≡

@X1,11,13,21[u, w], X13,6,14,22[u, w], X20,14,10,15[v, u], X3,7,19,15[v, u],

X19,2,9,16[v, u], X4,17,20,16[v, u], X17,12,18,22[u, w], X18,5,8,21[u, w]

True



5. Some Problems in Heaven.

Unfortunately, dimA(X ,X ) = dim Λ(X ,X ) = 4|X | is big. Fortunately, we have the
following theorem, a version of one of the main results in Halacheva’s
thesis, [Ha1, Ha2]:
Theorem. Working in Λ(X ∪ X ), if w = ωeλ is a balanced Gaussian (namely, a
scalar ω times the exponential of a quadratic λ =

∑
ζ∈X ,z∈X αζ,zζz), then

generically so is cx ,ξeλ.
(This is great news! The space of balanced quadratics is only |X ||X |-dimensional!)



Proof. Recall that cx ,ξ : (1, ξ, x , xξ)w ′ 7→ (1, 0, 0, 1)w ′, write
λ = µ+ ηx + ξy + αξx , and ponder eλ =

. . .+
1

k!
(µ+ ηx + ξy + αξx)(µ+ ηx + ξy + αξx) · · · (µ+ ηx + ξy + αξx)︸ ︷︷ ︸

k factors

+ . . . .

Then cx ,ξeλ has three contributions:

I eµ, from the term proportional to 1 (namely, independent of ξ and x) in eλ

I −αeµ, from the term proportional to xξ, where the x and the ξ come from the
same factor above.

I ηyeµ, from the term proportional to xξ, where the x and the ξ come from
different factors above.

So cx ,ξeλ = eµ(1− α + ηy) = (1− α)eµ(1 + ηy/(1− α)) = (1− α)eµeηy/(1−α) =
(1− α)eµ+ηy/(1−α).

�



Γ-calculus.

Thus we have an almost-always-defined “Γ-calculus”: a contraction algebra
morphism T (X ,X )→ R ×X ⊗R/R X whose behaviour under contractions is given
by

cx ,ξ(ω, λ = µ+ ηx + ξy + αξx) = ((1− α)ω, µ + ηy/(1− α)).

(Γ is fully defined on pure tangles – tangles without closed components – and
hence on long knots).



6. An Implementation of Γ.

If I didn’t implement I wouldn’t believe myself.

Written in Mathematica [Wo], available as the notebook Gamma.nb at
http://drorbn.net/mo21/ap. Code lines are highlighted in grey, demo lines are
plain. We start with canonical forms for quadratics with rational function
coefficients:
CCF[ℰ_] := Factor[ℰ];

CF[ℰ_] := Modulevs = Union@Casesℰ, (ξ x)_, ∞,

TotalCCF[#〚2〛] Times @@ vs#〚1〛 & /@ CoefficientRules[ℰ, vs];

http://drorbn.net/mo21/ap


Multiplying and comparing Γ objects:

Γ /: Γ[is1_, os1_, cs1_, ω1_, λ1_]×Γ[is2_, os2_, cs2_, ω2_, λ2_] :=

Γ[is1 ⋃ is2, os1 ⋃ os2, Join[cs1, cs2], ω1 ω2, λ1 + λ2]

Γ /: Γ[is1_, os1_, _, ω1_, λ1_] ≡ Γ[is2_, os2_, _, ω2_, λ2_] :=

TrueQ[(Sort@is1 === Sort@is2) ∧ (Sort@os1 === Sort@os2) ∧

Simplify[ω1 ⩵ ω2] ∧ CF@λ1 ⩵ CF@λ2]

No rules for linear operations!



Contractions:
ch_,t_@Γ[is_, os_, cs_, ω_, λ_] := Module{α, η, y, μ},

α = ∂ξt,xh
λ; μ = λ /. ξt xh → 0;

η = ∂x
h
λ /. ξt → 0; y = ∂ξt

λ /. xh → 0;

Γ[

DeleteCases[is, t], DeleteCases[os, h], KeyDrop[cs, {xh, ξt}],

CCF[(1 - α) ω], CF[μ + η y/(1 - α)]

] /. If[MatchQ[cs[ξt], τ_], cs[ξt] → cs[xh], cs[xh] → cs[ξt]];

c@Γ[is_, os_, cs_, ω_, λ_] := Fold[c#2,#2[#1] &, Γ[is, os, cs, ω, λ], is ⋂ os]



The crossings and the point:

Γ[Xi_,j_,k_,l_[S_, T_]] := Γ{l, i}, {j, k}, ξi → S, xj → T, xk → S, ξl → T,

T-1/2, CF{ξl, ξi}.
1 1 - T

0 T
.{xj, xk};

ΓXi_,j_,k_,l_[S_, T_] := Γ{i, j}, {k, l}, ξi → S, ξj → T, xk → S, xl → T,

T1/2, CF{ξi, ξj}.
T-1 0

1 - T-1 1
.{xk, xl};

Γ[Xi_,j_,k_,l_] := Γ[Xi,j,k,l[τi, τl]];

Γ[Xi_,j_,k_,l_] := ΓXi,j,k,l[τi, τj];

Γ[Pi_,j_[T_]] := Γ[{i}, {j}, ξi → T, xj → T, 1, ξi xj];

Γ[Pi_,j_] := Γ[Pi,j[τi]];



Automatic intelligent contractions:

Γ[{γ_Γ}] := c[γ];

Γ[{γ1_Γ, γs__Γ}] := Module[{γ2},

γ2 = First@MaximalBy[{γs}, Length[γ1〚1〛 ⋂ #〚2〛] + Length[γ1〚2〛 ⋂ #〚1〛] &];

Γ[Join[{c[γ1 γ2]}, DeleteCases[{γs}, γ2]]] ]

Γ[s_List] := Γ[Γ /@ s]



Conversions A ↔ Γ:
Γ@[is_, os_, cs_, w_] := Module[{i, j, ω = Coefficient[w, Wedge[ ]]},

Γ[is, os, cs, ω, Sum[Cancel[-Coefficient[w, xj ⋀ξi] ξi xj /ω],

{i, is}, {j, os}]]

];

@Γ[is_, os_, cs_, ω_, λ_] :=

[is, os, cs, Expand[ω WExp[Expand[λ] /. ξa_ xb_ ⧴ ξa ⋀xb]]];

The conversions are inverses of each other:
Γ[{1, 2, 3}, {1, 2, 3}, {x1 → τ1, x2 → τ2, x3 → τ3, ξ1 → τ1, ξ2 → τ2, ξ3 → τ3},

ω, a11 x1 ξ1 + a12 x2 ξ1 + a13 x3 ξ1 + a21 x1 ξ2 + a22 x2 ξ2 + a23 x3 ξ2 + a31 x1 ξ3 +

a32 x2 ξ3 + a33 x3 ξ3];

Γ@@γ ⩵ γ

True

The conversions commute with contractions:
Γ@c3,3@@γ ≡ c3,3@γ

True



The Naik-Stanford Double Delta Move (again)
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TimingΓ@X6,10,28,24[w, v], X28,3,29,19[w, v], X26,20,27,19[w, v], X27,23,11,24[w, v],

X1,12,13,30[u, w], X13,5,14,25[u, w], X17,26,18,25[u, w], X18,29,8,30[u, w],

X4,7,22,15[v, u], X22,2,23,16[v, u], X20,17,21,16[v, u], X21,14,9,15[v, u] ≡

Γ@X5,9,25,21[w, v], X25,4,26,22[w, v], X29,23,30,22[w, v], X30,20,12,21[w, v],

X2,11,16,27[u, w], X16,6,17,28[u, w], X14,29,15,28[u, w], X15,26,7,27[u, w],

X3,8,19,18[v, u], X19,1,20,13[v, u], X23,14,24,13[v, u], X24,17,10,18[v, u]

{1.28125, True}



Conway’s Third Identity
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Sorry, Γ has nothing to say about that...’



What I still don’t understand.

I What becomes of cx ,ξeλ if we have to divide by 0 in order to write it again as
an exponentiated quadratic? Does it still live within a very small subset of
Λ(X t X )?

I How do cablings and strand reversals fit within A?

I Are there “classicality conditions” satisfied by the invariants of classical
tangles (as opposed to virtual ones)?
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Thank You!


