Pensieve header: Notebook for DBN Lecture 3 in Matemale, April 2018. See http://www.math.toronto.edu/~drorbn/Talks/Matemale-1804/.

Today. First Dror, then Roland.

Unrelated Question. Anybody wants a French (azerty) keyboard for a surface pro?

Before we Start...

Please think about our Partial To do List!

A Partial To Do List.

- Complete all "docility" arguments by identifying a "contained" docile substructure.
- Understand denominators and get rid of them.
- See if much can be gained by including *P* in the exponential: Understand the braid group representations that arise. $e^{L+Q}P \leadsto e^{L+Q+P}$?
- Clean the program and make it efficient.
- Run it for all small knots and links, at k = 2, 3.
- Understand the centre and figure out how to read the output.
- Execute the Drinfel'd double procedule at E-level (and thus Figure out the action of the Weyl group. get rid of DeclareAlgebra and all that is around it!).
- Extend to sl₃ and beyond.
- Do everything with Zip and Bind as the fundamentals, wi- What else can you do with the "solvable approximations"? thout ever referring back to (quantized) Lie algebras.

- Prove a genus bound and a Seifert formula.
- Obtain "Gauss-Gassner formulas" (ωεβ/NCSU).
- Relate with Melvin-Morton-Rozansky and with Rozansky-Overbay.
- Find a topological interpretation. The Garoufalidis-Rozansky "loop expansion" [GR]?
- Figure out the action of the Cartan automorphism.
- Disprove the ribbon-slice conjecture!
- Do everything at the "arrow diagram" level of finite-type invariants of (rotational) virtual tangles.
- And with the "Gaussian zip and bind" technology?

Recall the Zipping Formula...

The Zipping / Contraction Theorem. If P has a finite ζ -degree and the y's and the q's are "small" then

$$\left\langle P(z_i, \zeta^j) e^{\eta^i z_i + y_j \zeta^j} \right\rangle_{(\zeta^j)} = \left\langle P(z_i + y_i, \zeta^j) e^{\eta^i (z_i + y_i)} \right\rangle_{(\zeta^j)},$$

(proof: replace $y_j \to \hbar y_j$ and test at $\hbar = 0$ and at ∂_{\hbar}), and

$$\begin{split} \left\langle P(z_i, \zeta^j) e^{c + \eta^i z_i + y_j \zeta^j + q^i_j z_i \zeta^j} \right\rangle_{(\zeta^j)} \\ &= \det(\tilde{q}) \left\langle P(\tilde{q}^k_i (z_k + y_k), \zeta^j) e^{c + \eta^i \tilde{q}^k_i (z_k + y_k)} \right\rangle_{(\zeta^j)} \end{split}$$

where \tilde{q} is the inverse matrix of 1 - q: $(\delta^i_j - q^i_j)\tilde{q}^j_k = \delta^i_k$ (proof: replace $q_i^i \to \hbar q_i^i$ and test at $\hbar = 0$ and at ∂_{\hbar}).

... and that we only need to compute operations on exponentials...

Proposition. If $F: S(B) \to S(B')$ is linear and "continuous", then ${}^tF = \exp\left(\sum_{z_i \in B} \zeta_i z_i\right) /\!\!/ F$.

Our Algebra QU

QU = $\langle y, a, x, t \rangle$, with t central and subject to the relations $[a, x] = \gamma x$, $[a, y] = -\gamma y$, and $xy - qyx = \frac{1 - TA^2}{\hbar}$, where $q = e^{\hbar \gamma \epsilon}$, $T = e^{\hbar t}$ ($t = \epsilon a - \gamma b$, as Roland derived the algebra), and $A = e^{-\hbar \epsilon a}$. For convenience we set $\mathcal{A} = e^{\gamma \alpha}$.

QU has a co-product Δ and an antipode S given by

$$\Delta(y,a,x,t) = (y_1 + T_1 y_2 A_1, a_1 + a_2, x_1 + A_1 x_2)$$

$$S(y,a,x,t) = (-T^{-1} A^{-1} y, -a, -A^{-1} x, -t)$$

The Program

Initialization / Utilities

DeclareAlgebra

DeclareMorphism

Meta-Operations

Implementing $CU = \mathcal{U}(sl_2^{\gamma\epsilon})$

Implementing QU = $\mathcal{U}_q(sl_2^{\gamma\epsilon})$

The representation ρ

tSW

Exponentials as needed.

Zip and Bind

Tensorial Representations

Alternative Algorithms

New Utilities (not on handout)

$$\alpha 2\mathcal{A} = \left\{ \mathbf{e}^{c_{-} \cdot \alpha_{i_{-}} + b_{-}} : \Rightarrow \mathcal{A}_{i}^{c/\gamma} \mathbf{e}^{b}, \mathbf{e}^{c_{-} \cdot \alpha + b_{-}} : \Rightarrow \mathcal{A}^{c/\gamma} \mathbf{e}^{b}, \mathbf{e}^{\mathcal{E}} : \Rightarrow \mathbf{e}^{\mathsf{Expand@}\mathcal{E}} \right\};$$

Some Runs

The Structure Tensors

```
ln[.] = $k = 1; \gamma = 1;
```

$$ln[*] := tm_{1,2\to 3} //. \alpha 2\mathcal{A}$$

But that's not the form we like! Let's open Zip and Bind!

How was it computed? Let's open the tSW box!

How was it computed? Let's open Exponentials as Needed!

$$In[\bullet]:= \mathsf{t}\Delta_{1\to 1,2}$$

In[
$$\bullet$$
]:= $\left\{tR_{1,2}, \overline{tR}_{1,2}\right\}$

$$ln[\bullet]:= \{tC_1, \overline{tC_2}\}$$

Some Testing

Associativity of tm.

$$ln[*]:= tm_{1,2\to2} \sim B_2 \sim tm_{2,3\to1} //. \alpha 2\mathcal{A}$$

$$ln[-] := tm_{1,2\to 2} \sim B_2 \sim tm_{2,3\to 1} \equiv tm_{2,3\to 2} \sim B_2 \sim tm_{1,2\to 1}$$

tS is an anti-homomorphism for tm.

$$ln[\circ]:= (tS_1 tS_2) \sim B_{1,2} \sim tm_{1,2\to 1} \equiv tm_{2,1\to 1} \sim B_1 \sim tS_1$$

Testing convolution inverse:

$$In[\bullet]:= t\Delta_{1\to 1,2} \sim B_1 \sim tS_1 \sim B_{1,2} \sim tm_{1,2\to 1}$$

Testing quasi-triangular axioms

$$||f||_{F} = \left(t\Delta_{1\to 1,2} tR_{3,4} \right) \sim B_{1,2,3,4} \sim \left(tm_{1,3\to 1} tm_{2,4\to 2} \right) = \left(t\Delta_{1\to 2,1} tR_{3,4} \right) \sim B_{1,2,3,4} \sim \left(tm_{3,1\to 1} tm_{4,2\to 2} \right)$$

Testing R3

$$ln[*]:= (tR_{2,3} tR_{1,4} tR_{5,6}) \sim B_{1,2,3,4,5,6} \sim (tm_{1,5\rightarrow 1} tm_{2,6\rightarrow 2} tm_{3,4\rightarrow 3}) \equiv (tR_{1,2} tR_{5,3} tR_{6,4}) \sim B_{1,2,3,4,5,6} \sim (tm_{1,5\rightarrow 1} tm_{2,6\rightarrow 2} tm_{3,4\rightarrow 3})$$

Docility and why it matters:

Definition. A "docile perturbed Gaussian" in the variables $(z_i)_{i \in S}$ over the ring R is an expression of the form $|C|_{adjective}|_{adjective}$

$$e^{q^{ij}z_iz_j}P = e^{q^{ij}z_iz_j}\left(\sum_{k\geq 0}\epsilon^k P_k\right),$$

where all coefficients are in R and where P is a "docile series": $\deg P_k \leq 4k$.

Docility Matters! The rank of the space of docile series to ϵ^k is polynomial in the number of variables |S|.

In our case our invariants and operations are of the form $e^{L+Q}P$, where

- L is a quadratic of the form $\sum l_{z\zeta} z\zeta$, where z runs over $\{t_i, \alpha_i\}_{i\in S}$ and ζ runs over $\{\tau_i, \alpha_i\}_{i\in S}$, with integer coefficients $l_{z\zeta}$.
- Q is a quadratic of the form $\sum q_{z\zeta} z\zeta$, where z runs over $\{x_i, \eta_i\}_{i\in S}$ and ζ runs over $\{\xi_i, y_i\}_{i\in S}$, with coefficients $q_{z\zeta}$ in the ring R_S of rational functions in $(T_i)_{i\in S}$ and $(\mathcal{A}_i)_{i\in S}$.
- $P = \sum \epsilon^k P_k$ is a docile power series in $\{y_i, a_i, x_i, \eta_i, \xi_i\}_{i \in S}$, where $\deg(y_i, a_i, x_i, \eta_i, \xi_i) = (1, 2, 1, 1, 1)$.

The Trefoil

Seeing that our invariant is poly-time and the trefoil knot is tiny, the following will compute in no time at all:

```
\begin{split} & \text{Iniming@Block} \left[ \left\{ \$k = 1 \right\}, \\ & Z = \mathsf{tR}_{1,5} \, \mathsf{tR}_{6,2} \, \mathsf{tR}_{3,7} \, \overline{\mathsf{tC}_4} \, \overline{\mathsf{tKink}_8} \, \overline{\mathsf{tKink}_9} \, \overline{\mathsf{tKink}_{10}}; \\ & \mathsf{Do} \left[ \mathsf{Z} = \mathsf{Z} \sim \mathsf{B}_{1,k} \sim \mathsf{tm}_{1,k\to 1}, \, \left\{ \mathsf{k}, \, \mathsf{2}, \, \mathsf{10} \right\} \right]; \, \, \mathsf{Z} \right] \\ & \mathsf{Iniming@Block} \left[ \left\{ \$k = 1 \right\}, \\ & \mathsf{Z} = \mathsf{tR}_{1,5} \, \mathsf{tR}_{6,2} \, \mathsf{tR}_{3,7} \, \overline{\mathsf{tC}_4} \, \overline{\mathsf{tKink}_8} \, \overline{\mathsf{tKink}_9} \, \overline{\mathsf{tKink}_{10}} \, \, /. \, \, \mathsf{T}_- \to \mathsf{T}_1; \\ & \mathsf{Do} \left[ \mathsf{Z} = \mathsf{Z} \sim \mathsf{B}_{1,k} \sim \mathsf{tm}_{1,k\to 1} \, /. \, \, \mathsf{T}_- \to \mathsf{T}_1, \, \left\{ \mathsf{k}, \, \mathsf{2}, \, \mathsf{10} \right\} \right]; \, \, \mathsf{Z} \right] \end{split}
```