Pensieve header: Notebook for DBN Lecture 3 in Matemale, April 2018. See http://www.math.toronto.e-du/~drorbn/Talks/Matemale-1804/.

Today. First Dror, then Roland.
Unrelated Question. Anybody wants a French (azerty) keyboard for a surface pro?

Before we Start...

Please think about our Partial To do List!

A Partial To Do List. - Prove a genus bound and a Seifert formula.

- Complete all "docility" arguments by identifying a "contai- • Obtain "Gauss-Gassner formulas" ($\omega \varepsilon \beta / \mathrm{NCSU}$). ned" docile substructure.
- Understand denominators and get rid of them.
- See if much can be gained by including P in the exponential: $\mathbb{e}^{L+Q} P \leadsto \mathbb{e}^{L+Q+P}$?
- Relate with Melvin-Morton-Rozansky and with RozanskyOverbay.
- Understand the braid group representations that arise.
- Find a topological interpretation. The Garoufalidis-Rozansky "loop expansion" [GR]?
- Run it for all small knots and links, at $k=2,3$.
- Figure out the action of the Cartan automorphism.
- Understand the centre and figure out how to read the output. - Disprove the ribbon-slice conjecture!
- Execute the Drinfel'd double procedule at \mathbb{E}-level (and thus get rid of DeclareAlgebra and all that is around it!).
- Extend to $s l_{3}$ and beyond.
- Do everything with Zip and Bind as the fundamentals, without ever referring back to (quantized) Lie algebras.
- Figure out the action of the Weyl group.
- Do everything at the "arrow diagram" level of finite-type invariants of (rotational) virtual tangles.
- What else can you do with the "solvable approximations"?
- And with the "Gaussian zip and bind" technology?

Recall the Zipping Formula...

The Zipping / Contraction Theorem. If P has a finite ζ-degree

 and the y 's and the q 's are "small" then$$
\left\langle P\left(z_{i}, \zeta^{j}\right) \mathrm{e}^{\eta^{i} z_{i}+y_{j} \zeta^{j}}\right\rangle_{\left(\xi^{j}\right)}=\left\langle P\left(z_{i}+y_{i}, \zeta^{j}\right) \mathrm{e}^{\eta^{i}\left(z_{i}+y_{i}\right)}\right\rangle_{\left(\xi^{j}\right)},
$$

(proof: replace $y_{j} \rightarrow \hbar y_{j}$ and test at $\hbar=0$ and at ∂_{\hbar}), and

$$
\begin{aligned}
\left\langle P\left(z_{i}, \zeta^{j}\right) \mathrm{e}^{c+\eta^{i} z_{i}+y_{j} \zeta^{j}+q_{j}^{i} z i \zeta^{j}}\right\rangle & \rangle_{\left(\xi^{j}\right)} \\
& =\operatorname{det}(\tilde{q})\left\langle P\left(\tilde{q}_{i}^{k}\left(z_{k}+y_{k}\right), \zeta^{j}\right) \mathbb{e}^{c+\eta^{i} \tilde{q}_{i}^{k}\left(z_{k}+y_{k}\right)}\right\rangle_{\left(\xi^{j}\right)}
\end{aligned}
$$

where \tilde{q} is the inverse matrix of $1-q:\left(\delta_{j}^{i}-q_{j}^{i}\right) \tilde{q}_{k}^{j}=\delta_{k}^{i}$ (proof: replace $q_{j}^{i} \rightarrow \hbar q_{j}^{i}$ and test at $\hbar=0$ and at ∂_{\hbar}).
... and that we only need to compute operations on exponentials...
Proposition. If $F: \mathcal{S}(B) \rightarrow \mathcal{S}\left(B^{\prime}\right)$ is linear and "continuous", then ${ }^{t} F=\exp \left(\sum_{z_{i} \in B} \zeta_{i} z_{i}\right) / / F$.

Our Algebra QU

$\mathrm{QU}=\langle y, a, x, t\rangle$, with t central and subject to the relations $[a, x]=\gamma x,[a, y]=-\gamma y$, and $x y-q y x=\frac{1-T A^{2}}{\hbar}$, where $q=\boldsymbol{e}^{\hbar \gamma \epsilon}, T=\boldsymbol{e}^{\hbar t}\left(t=\epsilon a-\gamma b\right.$, as Roland derived the algebra), and $A=\boldsymbol{e}^{-\hbar \epsilon a}$. For convenience we set $\mathcal{A}=e^{\gamma \alpha}$.

QU has a co-product Δ and an antipode S given by

$$
\begin{gathered}
\Delta(\mathrm{y}, \mathrm{a}, \mathrm{x}, \mathrm{t})=\left(y_{1}+T_{1} y_{2} A_{1}, a_{1}+a_{2}, x_{1}+A_{1} x_{2}\right) \\
\mathrm{S}(\mathrm{y}, \mathrm{a}, \mathrm{x}, \mathrm{t})=\left(-T^{-1} A^{-1} y,-a,-A^{-1} x,-t\right)
\end{gathered}
$$

The Program

Initialization / Utilities

DeclareAlgebra
DeclareMorphism
Meta-Operations
Implementing $\mathrm{CU}=\mathcal{U}\left(\mathrm{sl}_{2}^{\gamma \epsilon}\right)$
Implementing $\mathrm{QU}=\mathcal{U}_{q}\left(\mathrm{sl}_{2}^{\left({ }_{2}^{\epsilon}\right)}\right)$
The representation ρ
tSW
Exponentials as needed.
Zip and Bind
Tensorial Representations
Alternative Algorithms
New Utilities (not on handout)

Some Runs

The Structure Tensors

$\ln [\rho]=\$ \mathrm{~K}=\mathbf{1} ; \quad \gamma=\mathbf{1} ;$
$\ln [\rho]=\operatorname{tm}_{1,2 \rightarrow 3} / / . \alpha \mathbf{2 A}$
But that's not the form we like! Let's open Zip and Bind!
How was it computed? Let's open the tSW box!
$\ln [0]:=\mathbf{t S}_{\mathbf{1}}$
How was it computed? Let's open Exponentials as Needed!
$\ln [\rho]=\mathbf{t} \boldsymbol{\Delta}_{\mathbf{1 \rightarrow 1 , 2}}$
$\ln [\sigma]=\left\{\mathrm{tR}_{1,2}, \overline{\mathrm{tR}}_{1,2}\right\}$
$\ln [-\rho]=\left\{\mathrm{tC}_{1}, \overline{\mathrm{tC}}_{2}\right\}$

Some Testing

Associativity of tm.
$\ln [\theta]=\operatorname{tm}_{1,2 \rightarrow 2} \sim B_{2} \sim \operatorname{tm}_{2,3 \rightarrow 1} / / \cdot \alpha 2 \mathcal{A}$
$\ln [\cdot]=\operatorname{tm}_{1,2 \rightarrow 2} \sim B_{2} \sim \operatorname{tm}_{2,3 \rightarrow 1} \equiv \operatorname{tm}_{2,3 \rightarrow 2} \sim B_{2} \sim \operatorname{tm}_{1,2 \rightarrow 1}$
tS is an anti-homomorphism for tm .
$\ln [\cdot]:=\left(\mathrm{tS}_{1} \mathrm{tS}_{2}\right) \sim \mathrm{B}_{1,2} \sim \mathrm{tm}_{1,2 \rightarrow 1} \equiv \mathrm{tm}_{2,1 \rightarrow 1} \sim \mathrm{~B}_{1} \sim \mathrm{tS}_{1}$
Testing convolution inverse:
$\ln [\rho]=\mathbf{t} \Delta_{1 \rightarrow 1,2} \sim \mathbf{B}_{1} \sim \mathbf{t S}_{1} \sim \mathbf{B}_{1,2} \sim \mathbf{t m}_{1,2 \rightarrow 1}$
Testing quasi-triangular axioms
$\ln \left[\right.$ [] $=\left(\mathrm{t}_{1->1,2} \mathrm{tR}_{3,4}\right) \sim \mathrm{B}_{1,2,3,4} \sim\left(\mathrm{tm}_{1,3 \rightarrow 1} \mathrm{tm}_{2,4 \rightarrow 2}\right) \equiv\left(\mathrm{t}_{1 \rightarrow 2,1} \mathrm{tR}_{3,4}\right) \sim \mathrm{B}_{1,2,3,4} \sim\left(\mathrm{tm}_{3,1 \rightarrow 1} \mathrm{tm}_{4,2 \rightarrow 2}\right)$
Testing R3
$\ln [$] $]=\left(t R_{2,3} t R_{1,4} t R_{5,6}\right) \sim B_{1,2,3,4,5,6} \sim\left(\right.$ tm $\left._{1,5 \rightarrow 1} \mathrm{tm}_{2,6 \rightarrow 2} \mathrm{tm}_{3,4 \rightarrow 3}\right) \equiv$
$\left(\mathrm{tR}_{1,2} \mathrm{tR}_{5,3} \mathrm{tR}_{6,4}\right) \sim \mathrm{B}_{1,2,3,4,5,6} \sim\left(\mathrm{tm}_{1,5 \rightarrow 1} \mathrm{tm}_{2,6 \rightarrow 2} \mathrm{tm}_{3,4 \rightarrow 3}\right)$
Docility and why it matters:
Definition. A "docile perturbed Gaussian" in the variables $\left(z_{i}\right)_{i \in S}$ over the ring R is an expression of the form

$$
\mathbb{e}^{q^{i z_{z}} z_{j}} P=\mathbb{e}^{q^{i j} z_{i} z_{j}}\left(\sum_{k \geq 0} \epsilon^{k} P_{k}\right),
$$

where all coefficients are in R and where P is a "docile series": $\operatorname{deg} P_{k} \leq 4 k$.
Docililty Matters! The rank of the space of docile series to ϵ^{k} is polynomial in the number of variables $|S|$.
In our case our invariants and operations are of the form $e^{L+Q} P$, where

- L is a quadratic of the form $\sum l_{Z \zeta} z \zeta$, where z runs over $\left\{t_{i}, \alpha_{i}\right\}_{i \in S}$ and ζ runs over $\left\{\tau_{i}, a_{i}\right\}_{i \in S}$, with integer coefficients $l_{z \zeta}$.

■ Q is a quadratic of the form $\sum q_{z \zeta} z \zeta$, where z runs over $\left\{x_{i}, \eta_{i}\right\}_{i \in S}$ and ζ runs over $\left\{\xi_{i}, y_{i}\right\}_{i \in S}$, with coefficients $q_{z \zeta}$ in the ring R_{S} of rational functions in $\left(T_{i}\right)_{i \in S}$ and $\left(\mathcal{F}_{i}\right)_{i \in S}$.

- $P=\Sigma \epsilon^{k} P_{k}$ is a docile power series in $\left\{y_{i}, a_{i}, x_{i}, \eta_{i}, \xi_{i}\right\}_{i \in S}$, where $\operatorname{deg}\left(y_{i}, a_{i}, x_{i}, \eta_{i}, \xi_{i}\right)=(1,2,1,1,1)$.

The Trefoil

Seeing that our invariant is poly-time and the trefoil knot is tiny, the following will compute in no time at all:

```
m[f]:= Timing@Block[{$k = 1},
    Z = tR 1,5 tR 
    Do[Z = Z~ B B,k ~ tm m,k->1, {k, 2, 10}]; Z]
```

m[[$]:=$ Timing@Block $[\{\$ \mathrm{k}=1\}$, $Z=\mathrm{tR}_{1,5} \mathrm{tR}_{6,2} \mathrm{tR}_{3,7} \overline{\mathrm{tC}}_{4} \overline{\mathrm{tKink}}_{8} \overline{\mathrm{tKink}}_{9} \overline{\mathrm{tKink}}_{10} / . \mathrm{T}_{-} \rightarrow \mathrm{T}_{1}$; Do $\left.\left[Z=Z \sim B_{1, k} \sim \operatorname{tm}_{1, k \rightarrow 1} / . T_{-} \rightarrow T_{1},\{k, 2,10\}\right] ; Z\right]$

