# Quantum Enveloping Algebras and Lie bi-algebras 

Sjabbo Schaveling

Mathematisch Instituut Leiden
Faculteit wiskunde en natuurwetenschappen
Universiteit Leiden
April 24, 2018

## Content

(1) Lie bialgebras and the classical double
(2) Hopf algebras and the quantum double
(3) Quantization of Lie and Hopf algebras
(-) Example: the quantum Heisenberg algebra
My main references are
(1) Majid, S., Foundations of Quantum Group Theory, Cambridge University Press, 1995,
(2) Chari, V., Pressley, A., A Guide to Quantum Groups, Cambridge University Press, 1994.
The proof of all propositions I state can be found here, except if stated otherwise.

## Content

(1) Lie bialgebras and the classical double
(2) Hopf algebras and the quantum double
(3) Quantization of Lie and Hopf algebras
(9) Example: the quantum Heisenberg algebra

My main references are
(1) Majid, S., Foundations of Quantum Group Theory, Cambridge University Press, 1995,
(2) Chari, V., Pressley, A., A Guide to Quantum Groups, Cambridge University Press, 1994.
The proof of all propositions I state can be found here, except if stated otherwise.

## Content

(1) Lie bialgebras and the classical double
(2) Hopf algebras and the quantum double
(3) Quantization of Lie and Hopf algebras
© Example: the quantum Heisenberg algebra
My main references are
(1) Majid, S., Foundations of Quantum Group Theory, Cambridge University Press, 1995,
(2) Chari, V., Pressley, A., A Guide to Quantum Groups, Cambridge University Press, 1994.
The proof of all propositions I state can be found here, except if stated otherwise.

## Content

(1) Lie bialgebras and the classical double
(2) Hopf algebras and the quantum double
(3) Quantization of Lie and Hopf algebras
(9) Example: the quantum Heisenberg algebra

## My main references are <br> (1) Majid, S., Foundations of Quantum Group Theory, Cambridge University Press, 1995, <br> © Chari, V., Pressley, A., A Guide to Quantum Groups, Cambridge University Press, 1994. <br> The proof of all propositions I state can be found here, except if stated otherwise.

## Content

(1) Lie bialgebras and the classical double
(2) Hopf algebras and the quantum double
(3) Quantization of Lie and Hopf algebras
(9) Example: the quantum Heisenberg algebra

My main references are
(1) Majid, S., Foundations of Quantum Group Theory, Cambridge University Press, 1995,
(2) Chari, V., Pressley, A., A Guide to Quantum Groups, Cambridge University Press, 1994.
The proof of all propositions I state can be found here, except if stated otherwise.

## Content

(1) Lie bialgebras and the classical double
(2) Hopf algebras and the quantum double
(3) Quantization of Lie and Hopf algebras
(4) Example: the quantum Heisenberg algebra

My main references are
(1) Majid, S., Foundations of Quantum Group Theory, Cambridge University Press, 1995,
(2) Chari, V., Pressley, A., A Guide to Quantum Groups, Cambridge University Press, 1994.
The proof of all propositions I state can be found here, except if stated otherwise.

## Lie bialgebras

Part I: Lie bialgebras and the classical double

## Lie bialgebras

## Definition 1

(Lie bialgebra) A Lie bi algebra $(g,[],, \delta)$ is a vector space $L$ over a field k together with a bilinear map [,]: $\mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ (the bracket) and a linear map $\delta: \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ (the cobracket) satisfying the following axioms:
(1) $[X, X]=0 \forall X \in \mathfrak{g}$
(2) $[X,[Y, Z]]+[Y,[Z, X]+[Z,[X, Y]]=0 \forall X, Y, Z \in g$
(3) $\delta$ is skew-symetric
(9) $\delta^{*}: \mathfrak{g}^{*} \otimes \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$ is a bracket on the dual Lie algebra $\mathfrak{g}^{*}$
(5) $\delta([X, Y])=X . \delta(Y)-Y . \delta(X)$

In this notation, $X \cdot \delta(Y)=\left(a d_{X} \otimes 1+1 \otimes \operatorname{ad} X\right)(\delta(Y))$, and $\operatorname{ad}_{X}(Y)=[X, Y]$, for all $X, Y \in \mathfrak{g}$, and $\delta(a)=\sum a_{1} \otimes a_{2}$.

## Lie bialgebras

## Definition 1

(Lie bialgebra) A Lie bi algebra $(\mathfrak{g},[],, \delta)$ is a vector space $L$ over a field $k$ together with a bilinear map [,]: $\mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ (the bracket) and a linear map $\delta: \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ (the cobracket) satisfying the following axioms:

$\square$ $a d_{X}(Y)=[X, Y]$, for all $X, Y \in \mathfrak{g}$, and $\delta(a)=\sum a_{1} \otimes a_{2}$.

## Lie bialgebras

## Definition 1

(Lie bialgebra) A Lie bi algebra $(\mathfrak{g},[],, \delta)$ is a vector space $L$ over a field k together with a bilinear map [,]: $\mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ (the bracket) and a linear map $\delta: \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ (the cobracket) satisfying the following axioms:
(1) $[X, X]=0 \forall X \in \mathfrak{g}$
(3) $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0 \forall X, Y, Z \in \mathfrak{g}$
(3) $\delta$ is skew-symetric
(9) $\delta^{*}: \mathfrak{a}^{*} \otimes \mathfrak{a}^{*} \rightarrow \mathfrak{a}^{*}$ is a bracket on the dual Lie algebra $\mathfrak{g}$ (3) $\delta([X, Y])=X . \delta(Y)-Y . \delta(X)$

In this notation, $X \cdot \delta(Y)=\left(a d_{X} \otimes 1+1 \otimes a d_{X}\right)(\delta(Y))$, and $a d_{X}(Y)=[X, Y]$, for all $X, Y \in \mathfrak{g}$, and $\delta(a)=\sum a_{1} \otimes a_{2}$

## Lie bialgebras

## Definition 1

(Lie bialgebra) A Lie bi algebra $(\mathfrak{g},[],, \delta)$ is a vector space $L$ over a field k together with a bilinear map [,]: $\mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ (the bracket) and a linear map $\delta: \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ (the cobracket) satisfying the following axioms:
(1) $[X, X]=0 \forall X \in \mathfrak{g}$
(2) $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0 \forall X, Y, Z \in \mathfrak{g}$
(3) $\delta$ is skew-symetric
(1) $\delta^{*}: \mathfrak{g}^{*} \otimes \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$ is a bracket on the dual Lie algebra $\mathfrak{g}^{*}$
In this notation, $X . \delta(Y)=(\operatorname{ad} x \otimes 1+1 \otimes \operatorname{ad} X)(\delta(Y))$, and $a d_{X}(Y)=[X, Y]$, for all $X, Y \in \mathfrak{g}$, and $\delta(a)=\sum a_{1} \otimes a_{2}$

## Lie bialgebras

## Definition 1

(Lie bialgebra) A Lie bi algebra $(\mathfrak{g},[],, \delta)$ is a vector space $L$ over a field k together with a bilinear map [,]: $\mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ (the bracket) and a linear map $\delta: \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ (the cobracket) satisfying the following axioms:
(1) $[X, X]=0 \forall X \in \mathfrak{g}$
(2) $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0 \forall X, Y, Z \in \mathfrak{g}$
(3) $\delta$ is skew-symetric
(1) $\delta^{*}: \mathfrak{g}^{*} \otimes \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$ is a bracket on the dual Lie algebra $\mathfrak{g}^{*}$ (6) $\delta([X, Y])=X . \delta(Y)-Y . \delta(X)$

In this notation, $X . \delta(Y)=(\operatorname{ad} X \otimes 1+1 \otimes \operatorname{ad} X)(\delta(Y))$, and $\operatorname{ad}_{X}(Y)=[X, Y]$, for all $X, Y \in \mathfrak{g}$, and $\delta(a)=\sum a_{1} \otimes a_{2}$

## Lie bialgebras

## Definition 1

(Lie bialgebra) A Lie bi algebra $(\mathfrak{g},[],, \delta)$ is a vector space $L$ over a field k together with a bilinear map [,]: $\mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ (the bracket) and a linear map $\delta: \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ (the cobracket) satisfying the following axioms:
(1) $[X, X]=0 \forall X \in \mathfrak{g}$
(2) $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0 \forall X, Y, Z \in \mathfrak{g}$
(3) $\delta$ is skew-symetric
(9) $\delta^{*}: \mathfrak{g}^{*} \otimes \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$ is a bracket on the dual Lie algebra $\mathfrak{g}^{*}$

In this notation, $X . \delta(Y)=\left(a d_{X} \otimes 1+1 \otimes \operatorname{ad}_{X}\right)(\delta(Y))$, and $\operatorname{ad}_{X}(Y)=[X, Y]$, for all $X, Y \in \mathfrak{g}$, and $\delta(a)=\sum a_{1} \otimes a_{2}$

## Lie bialgebras

## Definition 1

(Lie bialgebra) A Lie bi algebra $(\mathfrak{g},[],, \delta)$ is a vector space $L$ over a field k together with a bilinear map [,]: $\mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ (the bracket) and a linear map $\delta: \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ (the cobracket) satisfying the following axioms:
(1) $[X, X]=0 \forall X \in \mathfrak{g}$
(2) $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0 \forall X, Y, Z \in \mathfrak{g}$
(3) $\delta$ is skew-symetric
(9) $\delta^{*}: \mathfrak{g}^{*} \otimes \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$ is a bracket on the dual Lie algebra $\mathfrak{g}^{*}$
(6) $\delta([X, Y])=X . \delta(Y)-Y . \delta(X)$

In this notation, $X . \delta(Y)=\left(\operatorname{ad} X \otimes 1+1 \otimes a d_{X}\right)(\delta(Y))$, and $a d_{X}(Y)=[X, Y]$, for all $X, Y \in \mathfrak{g}$, and $\delta(a)=\sum a_{1} \otimes a_{2}$

## Lie bialgebras

## Definition 1

(Lie bialgebra) A Lie bi algebra $(\mathfrak{g},[],, \delta)$ is a vector space $L$ over a field k together with a bilinear map [,]: $\mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ (the bracket) and a linear map $\delta: \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ (the cobracket) satisfying the following axioms:
(1) $[X, X]=0 \forall X \in \mathfrak{g}$
(2) $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0 \forall X, Y, Z \in \mathfrak{g}$
(3) $\delta$ is skew-symetric
(9) $\delta^{*}: \mathfrak{g}^{*} \otimes \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$ is a bracket on the dual Lie algebra $\mathfrak{g}^{*}$
(9) $\delta([X, Y])=X . \delta(Y)-Y . \delta(X)$

In this notation, $X . \delta(Y)=\left(a d_{X} \otimes 1+1 \otimes a d_{X}\right)(\delta(Y))$, and $\operatorname{ad}_{X}(Y)=[X, Y]$, for all $X, Y \in \mathfrak{g}$,

## Lie bialgebras

## Definition 1

(Lie bialgebra) A Lie bi algebra $(\mathfrak{g},[],, \delta)$ is a vector space $L$ over a field k together with a bilinear map [,]: $\mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ (the bracket) and a linear map $\delta: \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ (the cobracket) satisfying the following axioms:
(1) $[X, X]=0 \forall X \in \mathfrak{g}$
(2) $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0 \forall X, Y, Z \in \mathfrak{g}$
(3) $\delta$ is skew-symetric
(9) $\delta^{*}: \mathfrak{g}^{*} \otimes \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$ is a bracket on the dual Lie algebra $\mathfrak{g}^{*}$
(3) $\delta([X, Y])=X . \delta(Y)-Y . \delta(X)$

In this notation, $X . \delta(Y)=\left(a d_{X} \otimes 1+1 \otimes a d_{X}\right)(\delta(Y))$, and $a d_{X}(Y)=[X, Y]$, for all $X, Y \in \mathfrak{g}$, and $\delta(a)=\sum a_{1} \otimes a_{2}$.

## Lie bialgebras

$\delta$ is a 1 cocycle, so look at the cases when $\delta$ is a coboundary: $\delta(X)=X . r$ for some $r \in \mathfrak{g} \otimes \mathfrak{g}$, and for all $X \in \mathfrak{g}$, where $r$ obeys (if we write $r=\sum r_{12}=\sum r^{[1]} \otimes r^{[2]}$ ):
(1) $r_{12}+r_{21}$ is a invariant under the action of $\mathfrak{g}$.
(2) $\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]=0$.

Here $\left[r_{12}, s_{13}\right]=\sum\left[r^{[1]}, s^{[1]}\right] \otimes r^{[2]} \otimes s^{[2]}$. Conditon 2 is called the classical Yang-Baxter equation, and $r$ is called the classical $r$-matrix. If the Lie-bialgebra structure arises from a classical $r$-matrix, then we call the Lie bialgebra quasitriangular.

## Lie bialgebras

$\delta$ is a 1 cocycle, so look at the cases when $\delta$ is a coboundary: $\delta(X)=X . r$ for some $r \in \mathfrak{g} \otimes \mathfrak{g}$, and for all $X \in \mathfrak{g}$, where $r$ obeys (if we write $r=\sum r_{12}=\sum r^{[1]} \otimes r^{[2]}$ ):
(1) $r_{12}+r_{21}$ is a invariant under the action of $\mathfrak{g}$.

Here $\left[r_{12}, s_{13}\right]=\sum\left[r^{[1]}, s^{[1]}\right] \otimes r^{[2]} \otimes s^{[2]}$. Conditon 2 is called the classical Yang-Baxter equation, and $r$ is called the classical $r$-matrix. If the Lie-bialgebra structure arises from a classical $r$-matrix, then we call the Lie bialgebra quasitriangular.

## Lie bialgebras

$\delta$ is a 1 cocycle, so look at the cases when $\delta$ is a coboundary: $\delta(X)=X . r$ for some $r \in \mathfrak{g} \otimes \mathfrak{g}$, and for all $X \in \mathfrak{g}$, where $r$ obeys (if we write $r=\sum r_{12}=\sum r^{[1]} \otimes r^{[2]}$ ):
(1) $r_{12}+r_{21}$ is a invariant under the action of $\mathfrak{g}$.
(2) $\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]=0$.
classical Yang-Baxter equation, and $r$ is called the classical $r$-matrix. If the Lie-bialgebra structure arises from a classical $r$-matrix, then we call the Lie bialgebra quasitriangular.

## Lie bialgebras

$\delta$ is a 1 cocycle, so look at the cases when $\delta$ is a coboundary: $\delta(X)=X . r$ for some $r \in \mathfrak{g} \otimes \mathfrak{g}$, and for all $X \in \mathfrak{g}$, where $r$ obeys (if we write $r=\sum r_{12}=\sum r^{[1]} \otimes r^{[2]}$ ):
(1) $r_{12}+r_{21}$ is a invariant under the action of $\mathfrak{g}$.
(2) $\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]=0$.

Here $\left[r_{12}, s_{13}\right]=\sum\left[r^{[1]}, s^{[1]}\right] \otimes r^{[2]} \otimes s^{[2]}$. Conditon 2 is called the
classical Yang-Baxter equation, and $r$ is called the classical
$r$-matrix. If the Lie-bialgebra structure arises from a classical
$r$-matrix, then we call the Lie bialgebra quasitriangular.

## Lie bialgebras

$\delta$ is a 1 cocycle, so look at the cases when $\delta$ is a coboundary: $\delta(X)=X . r$ for some $r \in \mathfrak{g} \otimes \mathfrak{g}$, and for all $X \in \mathfrak{g}$, where $r$ obeys (if we write $r=\sum r_{12}=\sum r^{[1]} \otimes r^{[2]}$ ):
(1) $r_{12}+r_{21}$ is a invariant under the action of $\mathfrak{g}$.
(2) $\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]=0$.

Here $\left[r_{12}, s_{13}\right]=\sum\left[r^{[1]}, s^{[1]}\right] \otimes r^{[2]} \otimes s^{[2]}$. Conditon 2 is called the classical Yang-Baxter equation, and $r$ is called the classical $r$-matrix. If the Lie-bialgebra structure arises from a classical $r$-matrix, then we call the Lie bialgebra quasitriangular.

## Lie bialgebra pairing

## (page 350 of Majid)

## Definition 2

(Lie bialgebra pairing) Let ( $\mathfrak{g},[],, \delta)$ be a finite dimensional Lie bialgebra. Let $\mathfrak{g}^{*}$ be the dual of $\mathfrak{g}$ viewed as vectorspace with pairing $\langle\rangle:, \mathfrak{g}^{*} \times \mathfrak{g} \rightarrow \boldsymbol{k}$. Then the following relations define a Lie
bialgebra structure on $\mathfrak{g}^{*}$

$$
\begin{aligned}
& \langle[a, b], c\rangle:=\langle a \otimes b, \delta c\rangle \\
& \langle\delta a, b \otimes c\rangle:=\langle a,[c, d]\rangle
\end{aligned}
$$

for all $a, b \in \mathfrak{g}^{*}$, and $c, d \in \mathfrak{g}$. Two Lie bialgebras are said to be dually paired if their Lie brackets and Lie cobrackets are related in this way.

## Lie bialgebra pairing

## (page 350 of Majid)

## Definition 2

(Lie bialgebra pairing) Let ( $\mathfrak{g},[],, \delta)$ be a finite dimensional Lie bialgebra. Let $\mathfrak{g}^{*}$ be the dual of $\mathfrak{g}$ viewed as vectorspace with pairing $\langle\rangle:, \mathfrak{g}^{*} \times \mathfrak{g} \rightarrow k$. Then the following relations define a Lie bialgebra structure on $\mathfrak{g}^{*}$ :

$$
\begin{align*}
& \langle[a, b], c\rangle:=\langle a \otimes b, \delta c\rangle  \tag{1}\\
& \langle\delta a, b \otimes c\rangle:=\langle a,[c, d]\rangle \tag{2}
\end{align*}
$$

for all $a, b \in \mathfrak{g}^{*}$, and $c, d \in \mathfrak{g}$. Two Lie bialgebras are said to be
dually paired if their Lie brackets and Lie cobrackets are related in this way.

## Lie bialgebra pairing

## (page 350 of Majid)

## Definition 2

(Lie bialgebra pairing) Let ( $\mathfrak{g},[],, \delta)$ be a finite dimensional Lie bialgebra. Let $\mathfrak{g}^{*}$ be the dual of $\mathfrak{g}$ viewed as vectorspace with pairing $\langle\rangle:, \mathfrak{g}^{*} \times \mathfrak{g} \rightarrow k$. Then the following relations define a Lie bialgebra structure on $\mathfrak{g}^{*}$ :

$$
\begin{align*}
& \langle[a, b], c\rangle:=\langle a \otimes b, \delta c\rangle  \tag{1}\\
& \langle\delta a, b \otimes c\rangle:=\langle a,[c, d]\rangle \tag{2}
\end{align*}
$$

for all $a, b \in \mathfrak{g}^{*}$, and $c, d \in \mathfrak{g}$. Two Lie bialgebras are said to be dually paired if their Lie brackets and Lie cobrackets are related in this way.

## Classical double

The theorem is also true for infinite dimensional pairing.

## Definition 3

Let $\mathfrak{g}$ be a finite dimensional Lie bialgebra with dual $\mathfrak{g}^{*}$. Then the classical double $D(\mathfrak{g})$ is a quasitriangular Lie bialgebra built on the vector space $\mathfrak{g}^{*} \oplus \mathfrak{g}$ with bracket, cobracket and r-matrix (here $e_{a}$ is a basis of $\mathfrak{g}$ and $f^{a}$ its dual basis):

$$
\begin{align*}
{[a \oplus b, c \oplus d]_{D} } & =\left([c, a]+\sum c_{1}\left\langle c_{2}, b\right\rangle-a_{1}\left\langle a_{2}, d\right\rangle\right)  \tag{3}\\
& \oplus\left([b, d]+\sum b_{1}\left\langle c, b_{2}\right\rangle-d_{1}\left\langle a, d_{2}\right\rangle\right) \\
\delta_{D}(a \oplus b)= & \sum\left(a_{1} \oplus 0\right) \otimes\left(a_{2} \oplus 0\right)+  \tag{4}\\
& \sum\left(0 \oplus b_{1}\right) \otimes\left(0 \oplus b_{2}\right), \\
r_{D} & =\sum_{a}\left(f^{a} \oplus 0\right) \otimes\left(0 \oplus e_{a}\right) \tag{5}
\end{align*}
$$

Note that $\mathfrak{g}^{*}$ has the negated (opposite) bracket in $D(\mathfrak{g})$.

## Classical double

The theorem is also true for infinite dimensional pairing.

## Definition 3

Let $\mathfrak{g}$ be a finite dimensional Lie bialgebra with dual $\mathfrak{g}^{*}$. Then the classical double $D(\mathfrak{g})$ is a quasitriangular Lie bialgebra built on the vector space $\mathfrak{g}^{*} \oplus \mathfrak{g}$ with bracket, cobracket and r-matrix (here $e_{a}$ is a basis of $\mathfrak{g}$ and $f^{a}$ its dual basis):


## Classical double

The theorem is also true for infinite dimensional pairing.

## Definition 3

Let $\mathfrak{g}$ be a finite dimensional Lie bialgebra with dual $\mathfrak{g}^{*}$. Then the classical double $D(\mathfrak{g})$ is a quasitriangular Lie bialgebra built on the vector space $\mathfrak{g}^{*} \oplus \mathfrak{g}$ with bracket, cobracket and $r$-matrix (here $e_{a}$ is a basis of $\mathfrak{g}$ and $f^{a}$ its dual basis):

$$
\begin{align*}
& {[a \oplus b, c \oplus d]_{D} }=\left([c, a]+\sum c_{1}\left\langle c_{2}, b\right\rangle-a_{1}\left\langle a_{2}, d\right\rangle\right)  \tag{3}\\
& \oplus\left([b, d]+\sum b_{1}\left\langle c, b_{2}\right\rangle-d_{1}\left\langle a, d_{2}\right\rangle\right) \\
& \delta_{D}(a \oplus b)=\sum\left(a_{1} \oplus 0\right) \otimes\left(a_{2} \oplus 0\right)+  \tag{4}\\
& \sum\left(0 \oplus b_{1}\right) \otimes\left(0 \oplus b_{2}\right), \\
& r_{D}=\sum_{a}\left(f^{a} \oplus 0\right) \otimes\left(0 \oplus e_{a}\right) \tag{5}
\end{align*}
$$

Note that $\mathfrak{g}^{*}$ has the negated (opposite) bracket in $D(\mathfrak{g})$

## Classical double

The theorem is also true for infinite dimensional pairing.

## Definition 3

Let $\mathfrak{g}$ be a finite dimensional Lie bialgebra with dual $\mathfrak{g}^{*}$. Then the classical double $D(\mathfrak{g})$ is a quasitriangular Lie bialgebra built on the vector space $\mathfrak{g}^{*} \oplus \mathfrak{g}$ with bracket, cobracket and r-matrix (here $e_{a}$ is a basis of $\mathfrak{g}$ and $f^{a}$ its dual basis):

$$
\begin{align*}
& {[a \oplus b, c \oplus d]_{D} }=\left([c, a]+\sum c_{1}\left\langle c_{2}, b\right\rangle-a_{1}\left\langle a_{2}, d\right\rangle\right)  \tag{3}\\
& \oplus\left([b, d]+\sum b_{1}\left\langle c, b_{2}\right\rangle-d_{1}\left\langle a, d_{2}\right\rangle\right) \\
& \delta_{D}(a \oplus b)=\sum\left(a_{1} \oplus 0\right) \otimes\left(a_{2} \oplus 0\right)+  \tag{4}\\
& \sum\left(0 \oplus b_{1}\right) \otimes\left(0 \oplus b_{2}\right), \\
& r_{D}=\sum_{a}\left(f^{a} \oplus 0\right) \otimes\left(0 \oplus e_{a}\right) \tag{5}
\end{align*}
$$

Note that $\mathfrak{g}^{*}$ has the negated (opposite) bracket in $D(\mathfrak{g})$.

## useful identities

Let $a, d \in \mathfrak{g}^{*}$ and $b, c \in \mathfrak{g}$. On $D(\mathfrak{g})$ define a pairing $\langle,\rangle_{D}: D(\mathfrak{g})^{*} \times D(\mathfrak{g}) \rightarrow k:\langle a \oplus b, d \oplus c\rangle_{D}=\langle a, c\rangle+\langle d, b\rangle$. Then

$$
\left\langle[a, b]_{D}, c\right\rangle_{D}=\langle a,[b, c]\rangle,\left\langle a,[d, c]_{D}\right\rangle_{D}=\langle[d, a], c\rangle .
$$

## Hopf Algebras

Part II: Hopf algebras and the quantum double.

## Hopf Algebras

## Definition 4

((co-)algebra) An algebra ( $H, \cdot, \mu$ ) over k is a vector space
$(H,+, k)$ with a compatible multiplication and unit map $\mu$ where
(1) the multiplication $\cdot: H \otimes H \rightarrow H$ is an associative, linear map which preserves the unit,
(2) the unit map $\mu: k \rightarrow H$ is a linear map with property

$$
\begin{aligned}
\cdot \circ \mu \otimes i d(i \otimes a) & =i \cdot a, \text { and } \\
\cdot o i d \otimes \mu(a \otimes i) & =i \cdot a \forall a \in H, i \in k\left(\text { or } \mu(1)=1_{H}\right) \text {. }
\end{aligned}
$$

A coalgebra $(H, \Delta, \epsilon)$ over $k$ is a vector space $(H,+, k)$ with a compatible comultiplication $\Delta$ and co-unit $\epsilon$ where
(1) the comultiplication $\Delta: H \rightarrow H \otimes H$ is a linear, coassociative map, where coassociativity means $\Delta \otimes i d \circ \Delta=i d \otimes \Delta \circ \Delta$ and $\Delta\left(1_{H}\right)=1_{H} \otimes 1_{H}$,
(3) the counit $\epsilon: H \rightarrow k$ has property
$(i d \otimes \epsilon) \circ \Delta(h)=(\epsilon \otimes i d) \circ \Delta(h)=h\left(\right.$ so $\left.\epsilon\left(1_{H}\right)=1\right)$.

## Hopf Algebras

## Definition 4

((co-)algebra) An algebra $(H, \cdot, \mu)$ over k is a vector space $(H,+, k)$ with a compatible multiplication $\cdot$ and unit map $\mu$ where
(1) the multiplication $\cdot: H \otimes H \rightarrow H$ is an associative, linear map which preserves the unit,
(2) the unit map $\mu: k \rightarrow H$ is a linear map with property
. $\circ \mu \otimes i d(i \otimes a)=i \cdot a$, and
. $\circ$ id $\otimes \mu(a \otimes i)=i \cdot a \forall a \in H, i \in k\left(\right.$ or $\left.\mu(1)=1_{H}\right)$.
A coalgebra $(H, \Delta, \epsilon)$ over $k$ is a vector space $(H,+, k)$ with a
compatible comultiplication $\Delta$ and co-unit $\epsilon$ where
(1) the comultiplication $\Delta: H \rightarrow H \otimes H$ is a linear, coassociative
map, where coassociativity means $\Delta \otimes i d \circ \Delta=i d \otimes \Delta \circ \Delta$
and $\Delta\left(1_{H}\right)=1_{H} \otimes 1_{H}$,
(2) the counit $\epsilon: H \rightarrow k$ has property
$(i d \otimes \epsilon) \circ \Delta(h)=(\epsilon \otimes i d) \circ \Delta(h)=h\left(\right.$ so $\left.\epsilon\left(1_{H}\right)=1\right)$.

## Hopf Algebras

## Definition 4

((co-)algebra) An algebra ( $H, \cdot, \mu$ ) over k is a vector space $(H,+, k)$ with a compatible multiplication and unit map $\mu$ where
(1) the multiplication $\cdot \mathrm{H} \otimes H \rightarrow H$ is an associative, linear map which preserves the unit,
(2) the unit map $\mu: k \rightarrow H$ is a linear map with property

$$
\begin{aligned}
& \cdot \circ \mu \otimes i d(i \otimes a)=i \cdot a, \text { and } \\
& \cdot \circ i d \otimes \mu(a \otimes i)=i \cdot a \forall a \in H, i \in k\left(\text { or } \mu(1)=1_{H}\right) .
\end{aligned}
$$

A coalgebra $(H, \Delta, \epsilon)$ over $k$ is a vector space $(H,+, k)$ with a compatible comultiplication $\Delta$ and co-unit $\epsilon$ where
(1) the comultiplication $\Delta: H \rightarrow H \otimes H$ is a linear, coassociative map, where coassociativity means $\Delta \otimes i d \circ \Delta=i d \otimes \Delta \circ \Delta$ and $\Delta\left(1_{H}\right)=1_{H} \otimes 1_{H}$,
(2) the counit $\epsilon: H \rightarrow k$ has property

$$
(i d \otimes \epsilon) \circ \Delta(h)=(\epsilon \otimes i d) \circ \Delta(h)=h\left(\text { so } \epsilon\left(1_{H}\right)=1\right)
$$

## Hopf Algebras

Note that k always denotes a field of characteristic 0 .
Definition 5
A Hopf algebra ( $H,+, \cdot, \mu, \Delta, \epsilon, S, k$ ) over k is a vector space $(H,+, k)$ which is both an algebra $(H, \cdot, \mu)$ and a coalgebra $(H, \Delta, \epsilon)$, and is equipped with a linear antipode map $S: H \rightarrow H$ (which is an anti-homomorphism) obeying
(1) $\Delta(g h)=\Delta(g) \Delta(h)$,
(2) $\epsilon(g h)=\epsilon(g) \epsilon(h)$,
(3) $\cdot(S \otimes i d) \circ \Delta=\cdot(i d \otimes S) \circ \Delta=\mu \circ \epsilon$

## Hopf Algebras

Note that k always denotes a field of characteristic 0 .

## Definition 5

A Hopf algebra $(H,+, \cdot, \mu, \Delta, \epsilon, S, k)$ over k is a vector space $(H,+, k)$ which is both an algebra $(H, \cdot, \mu)$ and a coalgebra $(H, \Delta, \epsilon)$, and is equipped with a linear antipode map $S: H \rightarrow H$
(which is an anti-homomorphism) obeying
(1) $\Delta(g h)=\Delta(g) \Delta(h)$,
(2) $\epsilon(g h)=\epsilon(g) \epsilon(h)$,
© $\cdot(S \otimes i d) \circ \Delta=\cdot(i d \otimes S) \circ \Delta=\mu \circ \epsilon$

## Hopf Algebras

Note that k always denotes a field of characteristic 0 .

## Definition 5

A Hopf algebra ( $H,+, \cdot, \mu, \Delta, \epsilon, S, k$ ) over k is a vector space $(H,+, k)$ which is both an algebra $(H, \cdot, \mu)$ and a coalgebra $(H, \Delta, \epsilon)$, and is equipped with a linear antipode map $S: H \rightarrow H$ (which is an anti-homomorphism) obeying

© $\cdot(S \otimes i d) \circ \Delta=\cdot(i d \otimes S) \circ \Delta=\mu \circ \epsilon$

## Hopf Algebras

Note that k always denotes a field of characteristic 0 .

## Definition 5

A Hopf algebra ( $H,+, \cdot, \mu, \Delta, \epsilon, S, k$ ) over k is a vector space $(H,+, k)$ which is both an algebra $(H, \cdot, \mu)$ and a coalgebra $(H, \Delta, \epsilon)$, and is equipped with a linear antipode map $S: H \rightarrow H$ (which is an anti-homomorphism) obeying
(1) $\Delta(g h)=\Delta(g) \Delta(h)$,
© $\cdot(S \otimes i d) \circ \Delta=\cdot(i d \otimes S) \circ \Delta=\mu \circ \epsilon$

## Hopf Algebras

Note that k always denotes a field of characteristic 0 .

## Definition 5

A Hopf algebra ( $H,+, \cdot, \mu, \Delta, \epsilon, S, k$ ) over k is a vector space $(H,+, k)$ which is both an algebra $(H, \cdot, \mu)$ and a coalgebra $(H, \Delta, \epsilon)$, and is equipped with a linear antipode map $S: H \rightarrow H$ (which is an anti-homomorphism) obeying
(1) $\Delta(g h)=\Delta(g) \Delta(h)$,
(2) $\epsilon(g h)=\epsilon(g) \epsilon(h)$,
© $\cdot(S \otimes i d) \circ \Delta=\cdot(i d \otimes S) \circ \Delta=\mu \circ \epsilon$

## Hopf Algebras

Note that k always denotes a field of characteristic 0 .

## Definition 5

A Hopf algebra ( $H,+, \cdot, \mu, \Delta, \epsilon, S, k$ ) over k is a vector space $(H,+, k)$ which is both an algebra $(H, \cdot, \mu)$ and a coalgebra $(H, \Delta, \epsilon)$, and is equipped with a linear antipode map $S: H \rightarrow H$ (which is an anti-homomorphism) obeying
(1) $\Delta(g h)=\Delta(g) \Delta(h)$,
(2) $\epsilon(g h)=\epsilon(g) \epsilon(h)$,
(3) $\cdot(S \otimes i d) \circ \Delta=\cdot(i d \otimes S) \circ \Delta=\mu \circ \epsilon$

## Hopf Algebras

## Definition 6

(Quasitriangular Hopf algebras) A Quasitriangular Hopf Algebra is a pair $(H, R)$, where H is a Hopf algebra and $R \in H \otimes H$ is invertible and obeys


## Definition 7

((Co-)commutative) A Hopf algebra is said to be commutative it is commutative as an algebra, and cocommutative if the co-product $\Delta$ obeys $\tau \circ \Delta=\Delta$.

## Hopf Algebras

## Definition 6

(Quasitriangular Hopf algebras) A Quasitriangular Hopf Algebra is a pair $(H, R)$, where H is a Hopf algebra and $R \in H \otimes H$ is invertible and obeys
(1) $(\Delta \otimes i d)(R)=R_{12} R_{23}$ and $(i d \otimes \Delta)(R)=R_{13} R_{12}$
(2) $\tau \circ \Delta(h)=R \Delta(h) R^{-1}, \forall h \in H$, where $\tau$ is the transposition map.


## Definition 7

((Co-)commutative) A Hopf algebra is said to be commutative it is commutative as an algebra, and cocommutative if the co-product $\Delta$ obeys $\tau \circ \Delta=\Delta$.

## Hopf Algebras

## Definition 6

(Quasitriangular Hopf algebras) A Quasitriangular Hopf Algebra is a pair $(H, R)$, where H is a Hopf algebra and $R \in H \otimes H$ is invertible and obeys
(1) $(\Delta \otimes i d)(R)=R_{12} R_{23}$ and $(i d \otimes \Delta)(R)=R_{13} R_{12}$
(2) $\tau \circ \Delta(h)=R \Delta(h) R^{-1}, \forall h \in H$, where $\tau$ is the transposition map.


## Definition 7

((Co-)commutative) A Hopf algebra is said to be commutative it is commutative as an algebra, and cocommutative if the co-product $\Delta$ obeys $\tau \circ \Delta=\Delta$

## Hopf Algebras

## Definition 6

(Quasitriangular Hopf algebras) A Quasitriangular Hopf Algebra is a pair $(H, R)$, where H is a Hopf algebra and $R \in H \otimes H$ is invertible and obeys
(1) $(\Delta \otimes i d)(R)=R_{12} R_{23}$ and $(i d \otimes \Delta)(R)=R_{13} R_{12}$
(2) $\tau \circ \Delta(h)=R \Delta(h) R^{-1}, \forall h \in H$, where $\tau$ is the transposition map.
Writing $R=\sum R^{(1)} \otimes R^{(2)}$, we denote
$R_{i j}=\sum 1 \otimes \cdots \otimes R^{(1)} \otimes 1 \cdots \otimes R^{(2)} \otimes \cdots \otimes 1$
Definition 7
((Co-)commutative) A Hopf algebra is said to be commutative it is commutative as an algebra, and cocommutative if the co-product $\Delta$ obeys $\tau \circ \Delta=\Delta$.

## Hopf Algebras

## Definition 6

(Quasitriangular Hopf algebras) A Quasitriangular Hopf Algebra is a pair $(H, R)$, where H is a Hopf algebra and $R \in H \otimes H$ is invertible and obeys
(1) $(\Delta \otimes i d)(R)=R_{12} R_{23}$ and $(i d \otimes \Delta)(R)=R_{13} R_{12}$
(2) $\tau \circ \Delta(h)=R \Delta(h) R^{-1}, \forall h \in H$, where $\tau$ is the transposition map.
Writing $R=\sum R^{(1)} \otimes R^{(2)}$, we denote $R_{i j}=\sum 1 \otimes \cdots \otimes R^{(1)} \otimes 1 \cdots \otimes R^{(2)} \otimes \cdots \otimes 1$

## Definition 7

((Co-)commutative) A Hopf algebra is said to be commutative it is commutative as an algebra, and cocommutative if the co-product $\Delta$ obeys $\tau \circ \Delta=\Delta$.

## Hopf Algebras

## Theorem 8

Let $(H, R)$ be a quasitriangular Hopf algebra, then $R$ solves the equation: $R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12}$, called the Quantum
Yang-Baxter equation.

## Ribbon Hopf algebras

Let us write $R=\sum R^{(1)} \otimes R^{(2)}$. Then define $u=\sum\left(S R^{(2)}\right) R^{(1)} \in H$, and $v=S u=\sum R^{(1)} S R^{(2)}$.

## Theorem 9

Let $(H, R)$ be a quasitriangular Hopf algebra with antipode S. Then $S$ is invertible and $S^{2}(h)=u h u^{-1}$ for all $h \in H$, and $S^{-2}(h)=v h v^{-1}$

## Definition 10

(Ribbon element) A quasitriangular Hopf algebra is called a ribbon Hopf algebra if the element uv has a central square root $v$, called the ribbon element, such that $v^{2}=v u, S v=v, \epsilon v=1$ and $\Delta v=Q^{-1}(v \otimes v)$, where $Q=R_{21} R$

## Ribbon Hopf algebras

Let us write $R=\sum R^{(1)} \otimes R^{(2)}$. Then define $u=\sum\left(S R^{(2)}\right) R^{(1)} \in H$, and $v=S u=\sum R^{(1)} S R^{(2)}$.

## Theorem 9

Let $(H, R)$ be a quasitriangular Hopf algebra with antipode S. Then $S$ is invertible and $S^{2}(h)=u h u^{-1}$ for all $h \in H$, and $S^{-2}(h)=v h v^{-1}$.

## Definition 10

(Ribbon element) A quasitriangular Hopf algebra is called a ribbon Hopf algebra if the element uv has a central square root $v$, called the ribbon element, such that $v^{2}=v u, S v=v, \epsilon v=1$ and $\Delta v=Q^{-1}(v \otimes v)$, where $Q=R_{21} R$.

## Ribbon Hopf algebras

Let us write $R=\sum R^{(1)} \otimes R^{(2)}$. Then define

$$
u=\sum\left(S R^{(2)}\right) R^{(1)} \in H, \text { and } v=S u=\sum R^{(1)} S R^{(2)} .
$$

## Theorem 9

Let $(H, R)$ be a quasitriangular Hopf algebra with antipode S. Then $S$ is invertible and $S^{2}(h)=u h u^{-1}$ for all $h \in H$, and $S^{-2}(h)=v h v^{-1}$.

## Definition 10

(Ribbon element) A quasitriangular Hopf algebra is called a ribbon Hopf algebra if the element uv has a central square root $v$, called the ribbon element, such that $v^{2}=v u, S v=v, \epsilon v=1$ and $\Delta v=Q^{-1}(v \otimes v)$, where $Q=R_{21} R$.

## Hopf algebra pairing

## Definition 11

(Hopf Pairing) Let G, H be a Hopf algebras. H and G are said to be dually paired as Hopf algebras if they are dually paired as vector spaces, and if the multiplication, co multiplication, antipode and counit behave in the following way under the pairing $\langle$,$\rangle :$

for all $a, b \in G$ and for all $c, d \in H$. G and $H$ are a strictly dual pair if the pairing is nondegenerate, i.e. there are no nonzero elements in G or H that pair to zero with every element in the dually paired algebra.

## Hopf algebra pairing

## Definition 11

(Hopf Pairing) Let G, H be a Hopf algebras. H and G are said to be dually paired as Hopf algebras if they are dually paired as vector spaces, and if the multiplication, co multiplication, antipode and counit behave in the following way under the pairing $\langle$,$\rangle :$

$$
\begin{align*}
\langle a b, c\rangle & =\langle a \otimes b, \Delta c\rangle  \tag{6}\\
\langle\Delta a, c \otimes d\rangle & =\langle a, c d\rangle  \tag{7}\\
\langle 1, c\rangle & =\epsilon(c)  \tag{8}\\
\langle a, 1\rangle & =\epsilon(a)  \tag{9}\\
\langle S a, c\rangle & =\langle a, S c\rangle \tag{10}
\end{align*}
$$

for all $a, b \in G$ and for all $c, d \in H . G$ and $H$ are a strictly dual
pair if the pairing is nondegenerate, i.e. there are no nonzero
elements in G or H that pair to zero with every element in the

## Hopf algebra pairing

## Definition 11

(Hopf Pairing) Let G, H be a Hopf algebras. H and G are said to be dually paired as Hopf algebras if they are dually paired as vector spaces, and if the multiplication, co multiplication, antipode and counit behave in the following way under the pairing $\langle$,$\rangle :$

$$
\begin{align*}
\langle a b, c\rangle & =\langle a \otimes b, \Delta c\rangle  \tag{6}\\
\langle\Delta a, c \otimes d\rangle & =\langle a, c d\rangle  \tag{7}\\
\langle 1, c\rangle & =\epsilon(c)  \tag{8}\\
\langle a, 1\rangle & =\epsilon(a)  \tag{9}\\
\langle S a, c\rangle & =\langle a, S c\rangle \tag{10}
\end{align*}
$$

for all $a, b \in G$ and for all $c, d \in H$. G and H are a strictly dual pair if the pairing is nondegenerate, i.e. there are no nonzero elements in G or H that pair to zero with every element in the dually paired algebra.

## Quantum Double

This works also for an infinite dimensional pairing. $H^{* o p}$ is the Hopf algebra $H^{*}$ with the opposite multiplication. We write $\Delta(a)=a_{1} \otimes a_{2}$, omitting the summation.

## Theorem 12

(Quantum Double) Let H be a finite dimensional Hopf algebra. The quantum double $D(H)$ is a quasitriangular Hopf algebra generated by $H, H^{* o p}$ as sub Hopf algebras with the quasitriangular structure $R=\sum_{a} f^{a} \otimes e_{a}$, where $\left\{e_{a}\right\}$ is the basis of $H$ and $\left\{f^{a}\right\}$ its dual basis. $D(H)$ is realised on the vectorspace $H^{*} \otimes H$ with product $(a \otimes h)(b \otimes g)=\sum b_{2} a \otimes h_{2} g\left\langle S h_{1}, b_{1}\right\rangle\left\langle h_{3}, b_{3}\right\rangle$, and tensor product unit, counit and coproduct.

## Quantum Double

This works also for an infinite dimensional pairing. $H^{* o p}$ is the Hopf algebra $H^{*}$ with the opposite multiplication. We write $\Delta(a)=a_{1} \otimes a_{2}$, omitting the summation.

## Theorem 12

(Quantum Double) Let H be a finite dimensional Hopf algebra. The quantum double $D(H)$ is a quasitriangular Hopf algebra generated by $H, H^{* o p}$ as sub Hopf algebras with the quasitriangular structure $R=\sum_{a} f^{a} \otimes e_{a}$, where $\left\{e_{a}\right\}$ is the basis of $H$ and $\left\{f^{a}\right\}$ its dual basis. $D(H)$ is realised on the vectorspace $H^{*} \otimes H$ with product $(a \otimes h)(b \otimes g)=\sum b_{2} a \otimes h_{2} g\left\langle S h_{1}, b_{1}\right\rangle\left\langle h_{3}, b_{3}\right\rangle$, and tensor product unit, counit and coproduct.

## Quantum Double

This works also for an infinite dimensional pairing. $H^{* o p}$ is the Hopf algebra $H^{*}$ with the opposite multiplication.
We write $\Delta(a)=a_{1} \otimes a_{2}$, omitting the summation.
Theorem 12
(Quantum Double) Let $H$ be a finite dimensional Hopf algebra.
The quantum double $D(H)$ is a quasitriangular Hopf algebra
generated by $H, H^{* o p}$ as sub Hopf algebras with the quasitriangular
structure $R=\sum_{a} f^{a} \otimes e_{a}$, where $\left\{e_{a}\right\}$ is the basis of $H$ and $\left\{f^{a}\right\}$
its dual basis. $D(H)$ is realised on the vectorspace $H^{*} \otimes H$ with
product $(a \otimes h)(b \otimes g)=\sum b_{2} a \otimes h_{2} g\left\langle S h_{1}, b_{1}\right\rangle\left\langle h_{3}, b_{3}\right\rangle$, and
tensor product unit, counit and coproduct.

## Quantum Double

This works also for an infinite dimensional pairing. $H^{* o p}$ is the Hopf algebra $H^{*}$ with the opposite multiplication. We write $\Delta(a)=a_{1} \otimes a_{2}$, omitting the summation.


## Quantum Double

This works also for an infinite dimensional pairing. $H^{* o p}$ is the Hopf algebra $H^{*}$ with the opposite multiplication.
We write $\Delta(a)=a_{1} \otimes a_{2}$, omitting the summation.

## Theorem 12

(Quantum Double) Let $H$ be a finite dimensional Hopf algebra. The quantum double $D(H)$ is a quasitriangular Hopf algebra generated by $H, H^{* o p}$ as sub Hopf algebras with the quasitriangular structure $R=\sum_{a} f^{a} \otimes e_{a}$, where $\left\{e_{a}\right\}$ is the basis of $H$ and $\left\{f^{a}\right\}$ its dual basis. $D(H)$ is realised on the vectorspace $H^{*} \otimes H$ with product $(a \otimes h)(b \otimes g)=\sum b_{2} a \otimes h_{2} g\left\langle S h_{1}, b_{1}\right\rangle\left\langle h_{3}, b_{3}\right\rangle$, and tensor product unit, counit and coproduct.

## Quantized Universal Enveloping algebras

Part III: Quantization of Lie and Hopf algebras.

## Universal enveloping algebra

## Definition 13

Let $\mathfrak{g}$ be a Lie algebra over $k$. The universal enveloping algebra $U(g)$ is the noncommutative algebra generated by 1 and the elements of $\mathfrak{g}$ (the tensor algebra over $k$ ) modulo the relations $[a, b]=a b-b a$ for all $a, b \in \mathfrak{g}$. The coproduct, counit and antipode are given by

$$
\Delta a=a \otimes 1+1 \otimes a, \epsilon a=0, S a=-a,
$$

where $\Delta, \epsilon$ are extended as algebra maps, and $S$ as an antialgebra
map.
Note that this algebra is cocommutative, so we can take the R-matrix to be trivial to make $U(\mathfrak{g})$ a quasitriangular Hopfalgebra.

## Universal enveloping algebra

## Definition 13

Let $\mathfrak{g}$ be a Lie algebra over k . The universal enveloping algebra $U(\mathfrak{g})$ is the noncommutative algebra generated by 1 and the elements of $\mathfrak{g}$ (the tensor algebra over k ) modulo the relations $[a, b]=a b-b a$ for all $a, b \in \mathfrak{g}$.
$\Delta a=a \otimes 1+1 \otimes a, \epsilon a=0, S a=-a$,
where $\Delta, \epsilon$ are extended as algebra maps, and $S$ as an antialgebra
map.
Note that this algebra is cocommutative, so we can take the R-matrix to be trivial to make $U(\mathfrak{g})$ a quasitriangular Hopfalgebra.

## Universal enveloping algebra

## Definition 13

Let $\mathfrak{g}$ be a Lie algebra over k . The universal enveloping algebra $U(\mathfrak{g})$ is the noncommutative algebra generated by 1 and the elements of $\mathfrak{g}$ (the tensor algebra over k ) modulo the relations $[a, b]=a b-b a$ for all $a, b \in \mathfrak{g}$. The coproduct, counit and antipode are given by

$$
\Delta a=a \otimes 1+1 \otimes a, \epsilon a=0, S a=-a,
$$

where $\Delta, \epsilon$ are extended as algebra maps, and $S$ as an antialgebra map.
Note that this algebra is cocommutative, so we can take the R-matrix to be trivial to make $U(\mathfrak{g})$ a quasitriangular Hopfalgebra.

## Universal enveloping algebra

## Definition 13

Let $\mathfrak{g}$ be a Lie algebra over $k$. The universal enveloping algebra $U(\mathfrak{g})$ is the noncommutative algebra generated by 1 and the elements of $\mathfrak{g}$ (the tensor algebra over k ) modulo the relations $[a, b]=a b-b a$ for all $a, b \in \mathfrak{g}$. The coproduct, counit and antipode are given by

$$
\Delta a=a \otimes 1+1 \otimes a, \epsilon a=0, S a=-a,
$$

where $\Delta, \epsilon$ are extended as algebra maps, and $S$ as an antialgebra map.
Note that this algebra is cocommutative, so we can take the R-matrix to be trivial to make $U(\mathfrak{g})$ a quasitriangular Hopfalgebra.

## Quantum Universal enveloping algebras

## Definition 14

A deformation of a Hopf algebra $(H, i, \mu, \epsilon, \Delta, S)$ over a field k is a topological Hopf algebra $\left(H_{h}, i_{h}, \mu_{h}, \epsilon_{h}, \Delta_{h}, S_{h}\right)$ over the ring $k[[h]]$ of formal power series in $h$ over $k$, such that
(1) $H_{h}$ is isomorphic to $H[[h]]$ as a $k[[h]]$ module.
(2) $\mu_{h}=\mu \bmod h, \Delta_{h}=\Delta \bmod h$.
Two Hopf algebra deformations are said to be equivalent if there is
an isomorphism $f_{h}$ of Hopf algebras over $k[[h]]$ which is the
dentity (mod $h$ ).

## Definition 15

(Quantized universal enveloping algebra (QUE)) A Hopf algebra deformation of the universal enveloping algebra $U(\mathfrak{g})$ of a Lie algebra $\mathfrak{g}$ is called a quantized universal enveloping algebra, or QUE algebra.

## Quantum Universal enveloping algebras

## Definition 14

A deformation of a Hopf algebra $(H, i, \mu, \epsilon, \Delta, S)$ over a field k is a topological Hopf algebra $\left(H_{h}, i_{h}, \mu_{h}, \epsilon_{h}, \Delta_{h}, S_{h}\right)$ over the ring $k[[h]]$ of formal power series in hover $k$, such that
(1) $H_{h}$ is isomorphic to $H[[h]]$ as a $k[[h]]$ module.
(2) $\mu_{h}=\mu \bmod \mathrm{h}, \Delta_{h}=\Delta \bmod \mathrm{h}$.

Two Hopf algebra deformations are said to be equivalent if there is an isomorphism $f_{h}$ of Hopf algebras over $k[[h]]$ which is the identity $(\bmod h)$.

## Definition 15

(Quantized universal enveloping algebra (QUE)) A Hopf algebra deformation of the universal enveloping algebra $U(g)$ of a Lie algebra $\mathfrak{g}$ is called a quantized universal enveloping algebra, or QUE algebra.

## Quantum Universal enveloping algebras

## Definition 14

A deformation of a Hopf algebra $(H, i, \mu, \epsilon, \Delta, S)$ over a field k is a topological Hopf algebra $\left(H_{h}, i_{h}, \mu_{h}, \epsilon_{h}, \Delta_{h}, S_{h}\right)$ over the ring $k[[h]]$ of formal power series in $h$ over $k$, such that
(1) $H_{h}$ is isomorphic to $H[[h]]$ as a $k[[h]]$ module.
(2) $\mu_{h}=\mu \bmod \mathrm{h}, \Delta_{h}=\Delta \bmod \mathrm{h}$.


## Definition 15

(Quantized universal enveloping algebra (QUE)) A Hopf algebra deformation of the universal enveloping algebra $U(\mathfrak{g})$ of a Lie algebra $\mathfrak{g}$ is called a quantized universal enveloping algebra, or QUE algebra.

## Quantum Universal enveloping algebras

## Definition 14

A deformation of a Hopf algebra $(H, i, \mu, \epsilon, \Delta, S)$ over a field k is a topological Hopf algebra $\left(H_{h}, i_{h}, \mu_{h}, \epsilon_{h}, \Delta_{h}, S_{h}\right)$ over the ring $k[[h]]$ of formal power series in h over $k$, such that
(1) $H_{h}$ is isomorphic to $H[[h]]$ as a $k[[h]]$ module.
(2) $\mu_{h}=\mu \bmod \mathrm{h}, \Delta_{h}=\Delta \bmod \mathrm{h}$.

Two Hopf algebra deformations are said to be equivalent if there is an isomorphism $f_{h}$ of Hopf algebras over $k[[h]]$ which is the identity $(\bmod h)$.


## Quantum Universal enveloping algebras

## Definition 14

A deformation of a Hopf algebra $(H, i, \mu, \epsilon, \Delta, S)$ over a field k is a topological Hopf algebra $\left(H_{h}, i_{h}, \mu_{h}, \epsilon_{h}, \Delta_{h}, S_{h}\right)$ over the ring $k[[h]]$ of formal power series in h over $k$, such that
(1) $H_{h}$ is isomorphic to $H[[h]]$ as a $k[[h]]$ module.
(2) $\mu_{h}=\mu \bmod \mathrm{h}, \Delta_{h}=\Delta \bmod \mathrm{h}$.

Two Hopf algebra deformations are said to be equivalent if there is an isomorphism $f_{h}$ of Hopf algebras over $k[[h]]$ which is the identity $(\bmod h)$.

## Definition 15

(Quantized universal enveloping algebra (QUE)) A Hopf algebra deformation of the universal enveloping algebra $U(\mathfrak{g})$ of a Lie algebra $\mathfrak{g}$ is called a quantized universal enveloping algebra, or QUE algebra.

## co-Poisson Hopf algebras

We have extended the bracket of a Lie bialgebra $\mathfrak{g}$ to $U(\mathfrak{g})$, and we have equipped $U(\mathfrak{g})$ with a Hopf algebra structure, but we have not yet extended $\delta$ to $\mathrm{U}(\mathrm{g})$.

Definition 16
(Co-Poisson Hopf algebras) A Co-Poisson Hopf algebra over a commutative ring k is a co-commutative Hopf algebra H with a skew symmetric k-module map $\delta: H \rightarrow H \otimes H$ (the poisson co-bracket) satisfying
(1) $\sigma \circ \delta \otimes i d \circ \delta=0$, where $\sigma$ means summing over cyclic permutations of the tensor product.
(2) $(\Delta \otimes i d) \delta=(i d \otimes \delta) \Delta+\sigma_{23}(\delta \otimes i d) \Delta$, where $\sigma_{23}$ means switching the second and third factor.
(3) For all $a, b \in H, \delta(a b)=\delta(a) \Delta(b)+\Delta(a) \delta(b)$.

## co-Poisson Hopf algebras

We have extended the bracket of a Lie bialgebra $\mathfrak{g}$ to $U(\mathfrak{g})$, and we have equipped $U(\mathfrak{g})$ with a Hopf algebra structure, but we have not yet extended $\delta$ to $\mathrm{U}(\mathrm{g})$.

## Definition 16

(Co-Poisson Hopf algebras) A Co-Poisson Hopf algebra over a commutative ring k is a co-commutative Hopf algebra H with a skew symmetric k-module map $\delta: H \rightarrow H \otimes H$ (the poisson co-bracket) satisfying:
(1) $\sigma \circ \delta \otimes i d \circ \delta=0$, where $\sigma$ means summing over cyclic
permutations of the tensor product.
(2) $(\Delta \otimes i d) \delta=(i d \otimes \delta) \Delta+\sigma_{23}(\delta \otimes i d) \Delta$, where $\sigma_{23}$ means
switching the second and third factor.
(3) For all $a, b \in H, \delta(a b)=\delta(a) \Delta(b)+\Delta(a) \delta(b)$.

## co-Poisson Hopf algebras

We have extended the bracket of a Lie bialgebra $\mathfrak{g}$ to $U(\mathfrak{g})$, and we have equipped $U(\mathfrak{g})$ with a Hopf algebra structure, but we have not yet extended $\delta$ to $\mathrm{U}(\mathrm{g})$.

## Definition 16

(Co-Poisson Hopf algebras) A Co-Poisson Hopf algebra over a commutative ring k is a co-commutative Hopf algebra H with a skew symmetric k-module map $\delta: H \rightarrow H \otimes H$ (the poisson co-bracket) satisfying:
(1) $\sigma \circ \delta \otimes i d \circ \delta=0$, where $\sigma$ means summing over cyclic permutations of the tensor product.
(2) $(\Delta \otimes i d) \delta=(i d \otimes \delta) \Delta+\sigma_{23}(\delta \otimes i d) \Delta$, where $\sigma_{23}$ means
switching the second and third factor
(3) For all $a b \in H \quad \delta(a b)=\delta(a) \wedge(b)+\Lambda(a) \delta(b)$

## co-Poisson Hopf algebras

We have extended the bracket of a Lie bialgebra $\mathfrak{g}$ to $U(\mathfrak{g})$, and we have equipped $U(\mathfrak{g})$ with a Hopf algebra structure, but we have not yet extended $\delta$ to $\mathrm{U}(\mathrm{g})$.

## Definition 16

(Co-Poisson Hopf algebras) A Co-Poisson Hopf algebra over a commutative ring k is a co-commutative Hopf algebra H with a skew symmetric k-module map $\delta: H \rightarrow H \otimes H$ (the poisson co-bracket) satisfying:
(1) $\sigma \circ \delta \otimes i d \circ \delta=0$, where $\sigma$ means summing over cyclic permutations of the tensor product.
(2) $(\Delta \otimes i d) \delta=(i d \otimes \delta) \Delta+\sigma_{23}(\delta \otimes i d) \Delta$, where $\sigma_{23}$ means switching the second and third factor.

## co-Poisson Hopf algebras

We have extended the bracket of a Lie bialgebra $\mathfrak{g}$ to $U(\mathfrak{g})$, and we have equipped $U(\mathfrak{g})$ with a Hopf algebra structure, but we have not yet extended $\delta$ to $\mathrm{U}(\mathrm{g})$.

## Definition 16

(Co-Poisson Hopf algebras) A Co-Poisson Hopf algebra over a commutative ring k is a co-commutative Hopf algebra H with a skew symmetric k-module map $\delta: H \rightarrow H \otimes H$ (the poisson co-bracket) satisfying:
(1) $\sigma \circ \delta \otimes i d \circ \delta=0$, where $\sigma$ means summing over cyclic permutations of the tensor product.
(2) $(\Delta \otimes i d) \delta=(i d \otimes \delta) \Delta+\sigma_{23}(\delta \otimes i d) \Delta$, where $\sigma_{23}$ means switching the second and third factor.
(3) For all $a, b \in H, \delta(a b)=\delta(a) \Delta(b)+\Delta(a) \delta(b)$.

## co-Poisson Hopf algebras

## Theorem 17

Let $\mathfrak{g}$ be a Lie bialgebra over a field $k$ of characteristic zero. Then the Lie co-bracket extends uniquely to a Poisson co-bracket $\delta$ on $U(\mathfrak{a})$, making $U(\mathfrak{a})$ a co-Poisson Hopf algebra. Conversely, if $U(g)$ has a Poisson co-bracket $\delta$, then $\left.\delta\right|_{\mathfrak{g}}$ is a Lie cobracket on $\mathfrak{g}$.

## co-Poisson Hopf algebras

## Theorem 17

Let $\mathfrak{g}$ be a Lie bialgebra over a field $k$ of characteristic zero. Then the Lie co-bracket extends uniquely to a Poisson co-bracket $\delta$ on $U(\mathfrak{g})$, making $U(\mathfrak{g})$ a co-Poisson Hopf algebra.

## Conversely, if $U(\mathfrak{g})$ has a Poisson co-bracket $\delta$, then $\left.\delta\right|_{\mathfrak{g}}$ is a Lie cobracket on $\mathfrak{g}$.

## co-Poisson Hopf algebras

## Theorem 17

Let $\mathfrak{g}$ be a Lie bialgebra over a field $k$ of characteristic zero. Then the Lie co-bracket extends uniquely to a Poisson co-bracket $\delta$ on $U(\mathfrak{g})$, making $U(\mathfrak{g})$ a co-Poisson Hopf algebra.
Conversely, if $U(\mathfrak{g})$ has a Poisson co-bracket $\delta$, then $\left.\delta\right|_{\mathfrak{g}}$ is a Lie cobracket on $\mathfrak{g}$.

## Quantum Universal enveloping algebras

## Definition 18

(Quantization of Hopf algebra) Let A be a cocommutative co-Poisson-Hopf algebra over a field $k$ of characteristic zero, and let $\delta$ be its Poisson co-bracket. A Quantization of A is a Hopf algebra deformation $A_{h}$ of A such that

$$
\delta(x)=\frac{\Delta_{h}(a)-\Delta_{h}^{o p}(a)}{h}(\bmod h)
$$

where $x \in A$ and $a \in A_{h}$ such that $x=a(\bmod h)$, and $\Delta^{\circ p}=\tau \circ \Delta$ is the opposite co-bracket.
A quantization of a Lie bialgebra $(g, \delta)$ is a quantization $U_{h}(g)$ of its universal enveloping algebra $U(\mathfrak{g})$ equipped with the co-Poisson-Hopf structure. Conversely, $(\mathfrak{g}, \delta)$ is called the classical limit of the QUE algebra $U_{h}(\mathfrak{g})$.

## Quantum Universal enveloping algebras



## Quantum Universal enveloping algebras

## Definition 18

(Quantization of Hopf algebra) Let A be a cocommutative co-Poisson-Hopf algebra over a field $k$ of characteristic zero, and let $\delta$ be its Poisson co-bracket. A Quantization of A is a Hopf algebra deformation $A_{h}$ of A such that

$$
\delta(x)=\frac{\Delta_{h}(a)-\Delta_{h}^{o p}(a)}{h}(\bmod h)
$$

where $x \in A$ and $a \in A_{h}$ such that $x=a(\bmod h)$, and $\Delta^{\circ p}=\tau \circ \Delta$ is the opposite co-bracket.


## Quantum Universal enveloping algebras

## Definition 18

(Quantization of Hopf algebra) Let A be a cocommutative co-Poisson-Hopf algebra over a field $k$ of characteristic zero, and let $\delta$ be its Poisson co-bracket. A Quantization of A is a Hopf algebra deformation $A_{h}$ of A such that

$$
\delta(x)=\frac{\Delta_{h}(a)-\Delta_{h}^{o p}(a)}{h}(\bmod h)
$$

where $x \in A$ and $a \in A_{h}$ such that $x=a(\bmod h)$, and $\Delta^{\circ p}=\tau \circ \Delta$ is the opposite co-bracket.
A quantization of a Lie bialgebra $(\mathfrak{g}, \delta)$ is a quantization $U_{h}(\mathfrak{g})$ of its universal enveloping algebra $U(\mathfrak{g})$ equipped with the co-Poisson-Hopf structure. Conversely, $(\mathfrak{g}, \delta)$ is called the classical limit of the QUE algebra $U_{h}(\mathfrak{g})$.

## Quantum Universal enveloping algebras

Let us state a few things:

## Theorem 19

The quantization of a Lie bi algebra is a quantized universal enveloping algebra.

## Theorem 20

Let $\left(U_{h}(\mathfrak{a}), R_{h}\right)$ be a QUE algebra that is quasitriangular as a Hopf algebra, and has $R_{h}=1 \otimes 1(\bmod h)$. Then if we define $r \in U(\mathfrak{g}) \otimes U(\mathfrak{g})$ as $r=\frac{R_{h}-1 \otimes 1}{h}(\bmod h), r \in \mathfrak{g} \otimes \mathfrak{g}$, and the classical limit of $U_{h}(\mathfrak{g})$ is a quasitriangular Lie bialgebra with classical r-matrix r.

## Quantum Universal enveloping algebras

Let us state a few things:

## Theorem 19

The quantization of a Lie bi algebra is a quantized universal enveloping algebra.

Theorem 20
Let $\left(U_{h}(\mathfrak{a}), R_{h}\right)$ be a QUE algebra that is quasitriangular as a Hopf algebra, and has $R_{h}=1 \otimes 1(\bmod h)$. Then if we define $r \in U(\mathfrak{g}) \otimes U(\mathfrak{g})$ as $r=\frac{R_{h}-1 \otimes 1}{h}(\bmod h), r \in \mathfrak{g} \otimes \mathfrak{g}$, and the classical limit of $U_{h}(\mathfrak{g})$ is a quasitriangular Lie bialgebra with classical r-matrix r.

## Quantum Universal enveloping algebras

Let us state a few things:

## Theorem 19

The quantization of a Lie bi algebra is a quantized universal enveloping algebra.

## Theorem 20

Let $\left(U_{h}(\mathfrak{g}), R_{h}\right)$ be a QUE algebra that is quasitriangular as a Hopf algebra, and has $R_{h}=1 \otimes 1(\bmod h)$. Then if we define $r \in U(\mathfrak{g}) \otimes U(\mathfrak{g})$ as $r=\frac{R_{h}-1 \otimes 1}{h}(\bmod h), r \in \mathfrak{g} \otimes \mathfrak{g}$, and the classical limit of $U_{h}(\mathfrak{g})$ is a quasitriangular Lie bialgebra with classical r-matrix r.

## Existence

The following theorem is due to Drinfeld (1983).

## Theorem 21

Let $\mathfrak{g}$ be a finite dimensional real Lie algebra, and let $r \in \mathfrak{g} \otimes \mathfrak{g}$ be the classical $r$-matrix. Then there exists a deformation $U_{h}(\mathfrak{g})$ of $U(\mathfrak{g})$ whose classical limit is $\mathfrak{g}$ with the Lie bialgebra structure defined by $r$. Moreover, $U_{h}(\mathfrak{g})$ is a triangular Hopf algebra (i.e. a quasitriangular Hopf algebra with $R_{21}=R^{-1}$ ) and is isomorphic to $U(\mathfrak{g})[[h]]$ as an algebra over $\mathbb{R}[[h]]$.

## Example: the Heisenberg algebra

Part IV: the quantum Heisenberg algebra.

## Summary

We have
© defined a Hopf algebra and its deformation,
(2) defined a Lie bialgebra and its quantization,
( looked at quasitriangular Hopf algebras and Lie bialgebras and the relations between the two,
( ) worked out the double of the Heisenberg algebra.
(3) defined the Quantum Double to make quasitriangula QUE algebras.

## Summary

We have
(1) defined a Hopf algebra and its deformation,
(2) defined a Lie bialgebra and its quantization,
(3) looked at quasitriangular Hopf algebras and Lie bialgebras and the relations between the two,
(9) worked out the double of the Heisenberg algebra.
(3) defined the Quantum Double to make quasitriangular QUE algebras.

## Summary

We have
(1) defined a Hopf algebra and its deformation,
(2) defined a Lie bialgebra and its quantization,
© looked at quasitriangular Hopf algebras and Lie bialgebras and the relations between the two,

- worked out the double of the Heisenberg algebra
© defined the Quantum Double to make quasitriangular QUE algebras.


## Summary

We have
(1) defined a Hopf algebra and its deformation,
(2) defined a Lie bialgebra and its quantization,
(3) looked at quasitriangular Hopf algebras and Lie bialgebras and the relations between the two,
(9) worked out the double of the Heisenberg algebra.
(3) defined the Quantum Double to make quasitriangular QUE algebras.

## Summary

We have
(1) defined a Hopf algebra and its deformation,
(2) defined a Lie bialgebra and its quantization,
(3) looked at quasitriangular Hopf algebras and Lie bialgebras and the relations between the two,
(9) worked out the double of the Heisenberg algebra.
© defined the Quantum Double to make quasitriangular QUE algebras.

## Summary

We have
(1) defined a Hopf algebra and its deformation,
(2) defined a Lie bialgebra and its quantization,
(3) looked at quasitriangular Hopf algebras and Lie bialgebras and the relations between the two,
(9) worked out the double of the Heisenberg algebra.
(5) defined the Quantum Double to make quasitriangular QUE algebras.

## Example: $U_{q}\left(s I_{2}\right)$

Part V: $U_{q}\left(s /_{2}\right)$

## Running example: $s l_{2}(\mathbb{C})$

Let us consider the Lie algebra $s l_{2}(\mathbb{C})$ generated by $\left\{H, X^{+}, X^{-}\right\}$ and the relations

$$
\left[H, X^{ \pm}\right]= \pm 2 X^{ \pm},\left[X^{+}, X^{-}\right]=H
$$

Then $s / 2$ becomes a quasitriangular Lie bialgebra if we set

$$
\delta(H)=0, \delta\left(X^{ \pm}\right)=X^{ \pm} \wedge H=X^{ \pm} \otimes H-H \otimes X^{ \pm}, r=X^{+} \wedge X^{-} .
$$

Note that we can define the Lie bi-subalgebras $b^{ \pm}=\operatorname{span}\left\{H, X^{ \pm}\right\}$ of $s l_{2}(\mathbb{C})$.

## Running example: $s l_{2}(\mathbb{C})$

Let us consider the Lie algebra $s l_{2}(\mathbb{C})$ generated by $\left\{H, X^{+}, X^{-}\right\}$ and the relations

$$
\left[H, X^{ \pm}\right]= \pm 2 X^{ \pm},\left[X^{+}, X^{-}\right]=H
$$

Then $s l_{2}$ becomes a quasitriangular Lie bialgebra if we set

Note that we can define the Lie bi-subalgebras $b^{ \pm}=\operatorname{span}\left\{H, X^{ \pm}\right\}$ of $s l_{2}(\mathbb{C})$

## Running example: $s l_{2}(\mathbb{C})$

Let us consider the Lie algebra $s l_{2}(\mathbb{C})$ generated by $\left\{H, X^{+}, X^{-}\right\}$ and the relations

$$
\left[H, X^{ \pm}\right]= \pm 2 X^{ \pm},\left[X^{+}, X^{-}\right]=H
$$

Then $s / 2$ becomes a quasitriangular Lie bialgebra if we set

$$
\delta(H)=0, \delta\left(X^{ \pm}\right)=X^{ \pm} \wedge H=X^{ \pm} \otimes H-H \otimes X^{ \pm}, r=X^{+} \wedge X^{-}
$$

Note that we can define the Lie bi-subalgebras $b^{ \pm}=\operatorname{span}\left\{H, X^{ \pm}\right\}$ of $s l_{2}(\mathbb{C})$

## Running example: $s l_{2}(\mathbb{C})$

Let us consider the Lie algebra $s l_{2}(\mathbb{C})$ generated by $\left\{H, X^{+}, X^{-}\right\}$ and the relations

$$
\left[H, X^{ \pm}\right]= \pm 2 X^{ \pm},\left[X^{+}, X^{-}\right]=H
$$

Then $s / 2$ becomes a quasitriangular Lie bialgebra if we set

$$
\delta(H)=0, \delta\left(X^{ \pm}\right)=X^{ \pm} \wedge H=X^{ \pm} \otimes H-H \otimes X^{ \pm}, r=X^{+} \wedge X^{-}
$$

Note that we can define the Lie bi-subalgebras $b^{ \pm}=\operatorname{span}\left\{H, X^{ \pm}\right\}$ of $s l_{2}(\mathbb{C})$.

## Example: $U_{\hbar}(s / 2)$; quantization of $b^{ \pm}$

To find $\Delta_{h}(H)$, we need that $\frac{\Delta_{\hbar}(H)-\Delta_{\hbar}^{o p}(H)}{\hbar}(\bmod \hbar)=\delta(H)=0$, which is satisfied by $\Delta_{\hbar}(H)=H \otimes 1+1 \otimes H$.
We can find $\Delta_{h}\left(X^{+}\right)$by taking $\Delta_{\hbar}\left(X^{+}\right)=X^{+} \otimes f+g \otimes X^{+}$, where $f$ and $g$ are functions of $\hbar$.
$\Delta_{\hbar}$ is coassociative and an algebra homomorphism, so we get

$$
\Delta_{\hbar}\left(X^{+}\right)=X^{+} \otimes e^{\hbar H}+1 \otimes X^{+}, \Delta_{\hbar}\left(X^{-}\right)=X^{-} \otimes 1+e^{-\hbar H} \otimes X^{+} .
$$

We can rewrite these expressions by defining $q=e^{\hbar}$ :

$$
\Delta_{h}\left(X^{+}\right)=X^{+} \otimes q^{H}+1 \otimes X^{+}, \Delta_{h}\left(X^{-}\right)=X^{-} \otimes 1+q^{-H} \otimes X^{+} .
$$

We now have calculated the quantizations $U_{q}\left(b^{ \pm}\right)$of the Lie bialgebras $b^{ \pm}$. Note that the monomials $\left(X^{ \pm}\right)^{t} H^{s}$ form a topological basis of $b^{ \pm}$.

## Example: $U_{\hbar}(s / 2)$; quantization of $b^{ \pm}$

To find $\Delta_{h}(H)$, we need that $\frac{\Delta_{\hbar}(H)-\Delta_{\hbar}^{o p}(H)}{\hbar}(\bmod \hbar)=\delta(H)=0$, which is satisfied by $\Delta_{\hbar}(H)=H \otimes 1+1 \otimes H$.
We can find $\Delta_{h}\left(X^{+}\right)$by taking $\Delta_{h}\left(X^{+}\right)=X^{+} \otimes f+g \otimes X^{+}$.
where $f$ and $g$ are functions of $\hbar$.
$\Delta_{\hbar}$ is coassociative and an algebra homomorphism, so we get

We can rewrite these expressions by defining $q=e^{\hbar}$ :

We now have calculated the quantizations $U_{q}\left(b^{ \pm}\right)$of the Lie bialgebras $b^{ \pm}$. Note that the monomials $\left(X^{ \pm}\right)^{t} H^{s}$ form a topological basis of $b^{ \pm}$

## Example: $U_{\hbar}(s / 2)$; quantization of $b^{ \pm}$

To find $\Delta_{h}(H)$, we need that $\frac{\Delta_{\hbar}(H)-\Delta_{\hbar}^{o p}(H)}{\hbar}(\bmod \hbar)=\delta(H)=0$, which is satisfied by $\Delta_{\hbar}(H)=H \otimes 1+1 \otimes H$.
We can find $\Delta_{\hbar}\left(X^{+}\right)$by taking $\Delta_{\hbar}\left(X^{+}\right)=X^{+} \otimes f+g \otimes X^{+}$, where $f$ and $g$ are functions of $\hbar$.
$\Delta_{\hbar}$ is coassociative and an algebra homomorphism, so we get

We can rewrite these expressions by defining $q=e^{\hbar}$ :

We now have calculated the quantizations $U_{q}\left(b^{ \pm}\right)$of the Lie bialgebras $b^{ \pm}$. Note that the monomials $\left(X^{ \pm}\right)^{t} H^{s}$ form a topological basis of $b^{ \pm}$

## Example: $U_{\hbar}(s / 2)$; quantization of $b^{ \pm}$

To find $\Delta_{h}(H)$, we need that $\frac{\Delta_{\hbar}(H)-\Delta_{\hbar}^{o p}(H)}{\hbar}(\bmod \hbar)=\delta(H)=0$, which is satisfied by $\Delta_{\hbar}(H)=H \otimes 1+1 \otimes H$.
We can find $\Delta_{\hbar}\left(X^{+}\right)$by taking $\Delta_{\hbar}\left(X^{+}\right)=X^{+} \otimes f+g \otimes X^{+}$, where f and g are functions of $\hbar$.
$\Delta_{\hbar}$ is coassociative and an algebra homomorphism, so we get

$$
\Delta_{\hbar}\left(X^{+}\right)=X^{+} \otimes e^{\hbar H}+1 \otimes X^{+}, \Delta_{\hbar}\left(X^{-}\right)=X^{-} \otimes 1+e^{-\hbar H} \otimes X^{+}
$$

We can rewrite these expressions by defining $q=e^{\hbar}$ :


We now have calculated the quantizations $U_{q}\left(b^{ \pm}\right)$of the Lie bialgebras $b^{ \pm}$. Note that the monomials $\left(X^{ \pm}\right)^{t} H^{s}$ form a topological basis of $b^{ \pm}$

## Example: $U_{\hbar}(s / 2)$; quantization of $b^{ \pm}$

To find $\Delta_{h}(H)$, we need that $\frac{\Delta_{\hbar}(H)-\Delta_{\hbar}^{o p}(H)}{\hbar}(\bmod \hbar)=\delta(H)=0$, which is satisfied by $\Delta_{\hbar}(H)=H \otimes 1+1 \otimes H$.
We can find $\Delta_{\hbar}\left(X^{+}\right)$by taking $\Delta_{\hbar}\left(X^{+}\right)=X^{+} \otimes f+g \otimes X^{+}$, where f and g are functions of $\hbar$.
$\Delta_{\hbar}$ is coassociative and an algebra homomorphism, so we get

$$
\Delta_{\hbar}\left(X^{+}\right)=X^{+} \otimes e^{\hbar H}+1 \otimes X^{+}, \Delta_{\hbar}\left(X^{-}\right)=X^{-} \otimes 1+e^{-\hbar H} \otimes X^{+}
$$

We can rewrite these expressions by defining $q=e^{\hbar}$ :

$$
\Delta_{\hbar}\left(X^{+}\right)=X^{+} \otimes q^{H}+1 \otimes X^{+}, \Delta_{\hbar}\left(X^{-}\right)=X^{-} \otimes 1+q^{-H} \otimes X^{+}
$$

We now have calculated the quantizations $U_{q}\left(b^{ \pm}\right)$of the Lie bialgebras $b^{ \pm}$.

## Example: $U_{\hbar}\left(s_{2}\right)$; quantization of $b^{ \pm}$

To find $\Delta_{h}(H)$, we need that $\frac{\Delta_{\hbar}(H)-\Delta_{\hbar}^{o p}(H)}{\hbar}(\bmod \hbar)=\delta(H)=0$, which is satisfied by $\Delta_{\hbar}(H)=H \otimes 1+1 \otimes H$.
We can find $\Delta_{\hbar}\left(X^{+}\right)$by taking $\Delta_{\hbar}\left(X^{+}\right)=X^{+} \otimes f+g \otimes X^{+}$, where f and g are functions of $\hbar$.
$\Delta_{\hbar}$ is coassociative and an algebra homomorphism, so we get

$$
\Delta_{\hbar}\left(X^{+}\right)=X^{+} \otimes e^{\hbar H}+1 \otimes X^{+}, \Delta_{\hbar}\left(X^{-}\right)=X^{-} \otimes 1+e^{-\hbar H} \otimes X^{+}
$$

We can rewrite these expressions by defining $q=e^{\hbar}$ :

$$
\Delta_{\hbar}\left(X^{+}\right)=X^{+} \otimes q^{H}+1 \otimes X^{+}, \Delta_{\hbar}\left(X^{-}\right)=X^{-} \otimes 1+q^{-H} \otimes X^{+}
$$

We now have calculated the quantizations $U_{q}\left(b^{ \pm}\right)$of the Lie bialgebras $b^{ \pm}$. Note that the monomials $\left(X^{ \pm}\right)^{t} H^{s}$ form a topological basis of $b^{ \pm}$.

## Example: $U_{q}\left(s l_{2}\right)$

Let us introduce the pairing $\langle\rangle:,\left(U_{q}\left(b^{+}\right)\right)^{*} \times U_{q}\left(b^{+}\right) \rightarrow k[[\hbar]]$. $U_{q}\left(b^{+}\right)^{*}$ is isomorphic to $U_{q}\left(b^{-}\right)$(say with isomorphism $\left.\phi: U_{q}\left(b^{-}\right) \rightarrow U_{q}\left(b^{+}\right)^{*}\right)$ We use the notation $X^{+}=X, \phi\left(X^{-}\right)=x$, and write A for $H \in U_{q}\left(b^{+}\right)$and a for $\phi(H) \in U_{q}\left(b^{+}\right)^{*}$.


We extend the pairing following the definition of a Hopf algebra pairing to obtain a dual basis:

where $q=e^{\hbar}$, and $[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}}$ and $[n]_{q}!=[n]_{q}[n-1]_{q} \cdots[1]_{q}$. From the double of $D\left(U_{q}\left(b^{+}\right)\right)$we can compute $U_{q}\left(s /_{2}\right)$ by aplying a simple homomorphism, giving us the quasitriangular structure. छ

## Example: $U_{q}\left(s l_{2}\right)$

Let us introduce the pairing $\langle\rangle:,\left(U_{q}\left(b^{+}\right)\right)^{*} \times U_{q}\left(b^{+}\right) \rightarrow k[[\hbar]]$. $U_{q}\left(b^{+}\right)^{*}$ is isomorphic to $U_{q}\left(b^{-}\right)$(say with isomorphism $\left.\phi: U_{q}\left(b^{-}\right) \rightarrow U_{q}\left(b^{+}\right)^{*}\right)$ We use the notation $X^{+}=X, \phi\left(X^{-}\right)=x$, and write A for $H \in U_{q}\left(b^{+}\right)$and a for $\phi(H) \in U_{q}\left(b^{+}\right)^{*}$. We assume $a, x$ is the dual basis:

$$
\begin{align*}
& \langle 1,1\rangle=1,\langle 1, A\rangle=0,\langle 1, X\rangle=0,\langle a, 1\rangle=0,\langle x, 1\rangle=0  \tag{11}\\
& \langle a, A\rangle=\hbar^{-1},\langle x, X\rangle=\hbar^{-1},\langle a, X\rangle=0,\langle x, A\rangle=0
\end{align*}
$$

We extend the pairing following the definition of a Hopf algebra pairing to obtain a dual basis:
where $q=e^{\hbar}$, and $[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}}$ and $[n]_{q}!=[n]_{q}[n-1]_{q} \cdots[1]_{q}$. From the double of $D\left(U_{q}\left(b^{+}\right)\right)$we can compute $U_{q}\left(s /_{2}\right)$ by aplying a simple homomorphism, giving us the quasitriangutar structure. 巨

## Example: $U_{q}\left(s l_{2}\right)$

Let us introduce the pairing $\langle\rangle:,\left(U_{q}\left(b^{+}\right)\right)^{*} \times U_{q}\left(b^{+}\right) \rightarrow k[[\hbar]]$. $U_{q}\left(b^{+}\right)^{*}$ is isomorphic to $U_{q}\left(b^{-}\right)$(say with isomorphism $\left.\phi: U_{q}\left(b^{-}\right) \rightarrow U_{q}\left(b^{+}\right)^{*}\right)$ We use the notation $X^{+}=X, \phi\left(X^{-}\right)=x$, and write A for $H \in U_{q}\left(b^{+}\right)$and a for $\phi(H) \in U_{q}\left(b^{+}\right)^{*}$. We assume $a, x$ is the dual basis:

$$
\begin{align*}
& \langle 1,1\rangle=1,\langle 1, A\rangle=0,\langle 1, X\rangle=0,\langle a, 1\rangle=0,\langle x, 1\rangle=0  \tag{11}\\
& \langle a, A\rangle=\hbar^{-1},\langle x, X\rangle=\hbar^{-1},\langle a, X\rangle=0,\langle x, A\rangle=0
\end{align*}
$$

We extend the pairing following the definition of a Hopf algebra pairing to obtain a dual basis:

$$
\left\langle a^{s^{\prime}} x^{t^{\prime}}, A^{s} X^{t}\right\rangle=\frac{1}{\hbar^{t+s}} \delta_{s, s^{\prime}} \delta_{t, t^{\prime}} s!q^{-1 / 2 t(t-1)}[t]_{q}!
$$

where $q=e^{\hbar}$, and $[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}}$ and $[n]_{q}!=[n]_{q}[n-1]_{q} \cdots[1]_{q}$.

## Example: $U_{q}\left(s I_{2}\right)$

Let us introduce the pairing $\langle\rangle:,\left(U_{q}\left(b^{+}\right)\right)^{*} \times U_{q}\left(b^{+}\right) \rightarrow k[[\hbar]]$. $U_{q}\left(b^{+}\right)^{*}$ is isomorphic to $U_{q}\left(b^{-}\right)$(say with isomorphism $\left.\phi: U_{q}\left(b^{-}\right) \rightarrow U_{q}\left(b^{+}\right)^{*}\right)$ We use the notation $X^{+}=X, \phi\left(X^{-}\right)=x$, and write A for $H \in U_{q}\left(b^{+}\right)$and a for $\phi(H) \in U_{q}\left(b^{+}\right)^{*}$. We assume $a, x$ is the dual basis:

$$
\begin{align*}
& \langle 1,1\rangle=1,\langle 1, A\rangle=0,\langle 1, X\rangle=0,\langle a, 1\rangle=0,\langle x, 1\rangle=0  \tag{11}\\
& \langle a, A\rangle=\hbar^{-1},\langle x, X\rangle=\hbar^{-1},\langle a, X\rangle=0,\langle x, A\rangle=0
\end{align*}
$$

We extend the pairing following the definition of a Hopf algebra pairing to obtain a dual basis:

$$
\left\langle a^{s^{\prime}} x^{t^{\prime}}, A^{s} X^{t}\right\rangle=\frac{1}{\hbar^{t+s}} \delta_{s, s^{\prime}} \delta_{t, t^{\prime}} s!q^{-1 / 2 t(t-1)}[t]_{q}!
$$

where $q=e^{\hbar}$, and $[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}}$ and $[n]_{q}!=[n]_{q}[n-1]_{q} \cdots[1]_{q}$. From the double of $D\left(U_{q}\left(b^{+}\right)\right)$we can compute $U_{q}\left(s /_{2}\right)$ by aplying a simple homomorphism, giving us the quasitriangular structure.

## The basis

Note that we are dividing by $\hbar$, so formally we should introduce new generators $\bar{a}=\hbar a$.
After quantization, in general we have no elements corresponding
to non simple roots in the Lie algebra. How to construct basis?
If the rootsystem of $\mathfrak{g}$ has no non-simple roots, we use the isomorphism $U_{h}(\mathfrak{g}) \rightarrow U(\mathfrak{g})[[h]]$ together with the classical PBW theorem.
In some cases $U_{h}(g)$ contains the non simple root elements. Otherwise, use the action of the braid group (the quantum analogue of the weyl group). In our case this is not necessary!

## The basis

Note that we are dividing by $\hbar$, so formally we should introduce new generators $\bar{a}=\hbar a$.
After quantization, in general we have no elements corresponding to non simple roots in the Lie algebra. How to construct basis?
If the rootsystem of $g$ has no non-simple roots, we use the isomorphism $U_{h}(\mathfrak{g}) \rightarrow U(\mathfrak{g})[[h]]$ together with the classical PBW
theorem
In some cases $U_{h}(g)$ contains the non simple root elements.
Otherwise, use the action of the braid group (the quantum
analogue of the weyl group). In our case this is not necessary!

## The basis

Note that we are dividing by $\hbar$, so formally we should introduce new generators $\bar{a}=\hbar$ a.
After quantization, in general we have no elements corresponding to non simple roots in the Lie algebra. How to construct basis? If the rootsystem of $\mathfrak{g}$ has no non-simple roots, we use the isomorphism $U_{h}(\mathfrak{g}) \rightarrow U(\mathfrak{g})[[h]]$ together with the classical PBW theorem.
In some cases $U_{h}(g)$ contains the non simple root elements.
Otherwise, use the action of the braid group (the quantum
analogue of the weyl group). In our case this is not necessary!

## The basis

Note that we are dividing by $\hbar$, so formally we should introduce new generators $\bar{a}=\hbar a$.
After quantization, in general we have no elements corresponding to non simple roots in the Lie algebra. How to construct basis? If the rootsystem of $\mathfrak{g}$ has no non-simple roots, we use the isomorphism $U_{h}(\mathfrak{g}) \rightarrow U(\mathfrak{g})[[h]]$ together with the classical PBW theorem.
In some cases $U_{h}(\mathfrak{g})$ contains the non simple root elements.
analogue of the weyl group). In our case this is not necessary!

## The basis

Note that we are dividing by $\hbar$, so formally we should introduce new generators $\bar{a}=\hbar a$.
After quantization, in general we have no elements corresponding to non simple roots in the Lie algebra. How to construct basis? If the rootsystem of $\mathfrak{g}$ has no non-simple roots, we use the isomorphism $U_{h}(\mathfrak{g}) \rightarrow U(\mathfrak{g})[[h]]$ together with the classical PBW theorem.
In some cases $U_{h}(\mathfrak{g})$ contains the non simple root elements.
Otherwise, use the action of the braid group (the quantum analogue of the weyl group). In our case this is not necessary!

## $U_{q}(s / 2)$

After executing the quantum double construction on $U_{q}\left(b^{+}\right)$we end up with the following relations (after applying the homomorphism which sends a back to H and $\times$ back to $X^{-}$, so dividing out a part of the Cartan subalgebra of the double:

$$
\begin{aligned}
& [a, A]=0 .) \\
& \quad\left[X^{+}, X^{-}\right]=\frac{e^{h H}-e^{-h H}}{e^{h}-e^{-h}}
\end{aligned}
$$



## We get the following R matrix from the quantum double:



## $U_{q}(s / 2)$

After executing the quantum double construction on $U_{q}\left(b^{+}\right)$we end up with the following relations (after applying the homomorphism which sends a back to H and $\times$ back to $X^{-}$, so dividing out a part of the Cartan subalgebra of the double:

$$
\begin{aligned}
& [a, A]=0 .) \\
& \quad\left[X^{+}, X^{-}\right]=\frac{e^{h H}-e^{-h H}}{e^{h}-e^{-h}}
\end{aligned}
$$

,

$$
\left[H, X^{-}\right]=-X^{-},\left[H, X^{+}\right]=X^{+}
$$

,
We get the following $R$ matrix from the quantum double:


## $U_{q}(s / 2)$

After executing the quantum double construction on $U_{q}\left(b^{+}\right)$we end up with the following relations (after applying the homomorphism which sends a back to H and $\times$ back to $X^{-}$, so dividing out a part of the Cartan subalgebra of the double:

$$
[a, A]=0 .)
$$

$$
\left[X^{+}, X^{-}\right]=\frac{e^{h H}-e^{-h H}}{e^{h}-e^{-h}}
$$

$$
\left[H, X^{-}\right]=-X^{-},\left[H, X^{+}\right]=X^{+}
$$

We get the following R matrix from the quantum double:

$$
\begin{equation*}
R_{h}=\exp \left(\frac{\hbar}{2} H \otimes H\right) \sum_{t=0}^{\infty} q^{1 / 2 t(t+1)} \frac{\left(1-q^{-2}\right)^{t}}{[t]_{q}!}\left(X^{+}\right)^{t} \otimes\left(X^{-}\right)^{t} \tag{12}
\end{equation*}
$$

## Appendices

## Part VI: Cohomologies.

## Lie bialgebra cohomology

## Definition 22

(Chevalley-Eilenburg complex) Let M be a $\mathfrak{g}$ module. Set $C^{n}((g), M):=H_{o}\left(\Lambda^{n}(g), M\right), n>0$, and $C_{0}(g, M):=M$, where $\Lambda^{k} \mathfrak{g}$ is the $k$-th exterior power of $\mathfrak{g}$. This is the Chevalley-Eilenberg cochain complex.

## We define the differential on $c \in C^{n}(\mathfrak{g}, M)$ as


where $x_{1}, \cdots, x_{n+1} \in \mathfrak{g}$, and $x . d$ means the module action of $\mathfrak{g}$ on $d \in M$.

## Lie bialgebra cohomology

## Definition 22

(Chevalley-Eilenburg complex) Let M be a $\mathfrak{g}$ module. Set $C^{n}((g), M):=\operatorname{Hom}_{k}\left(\bigwedge^{n}(g), M\right), n>0$, and $C_{0}(g, M):=M$, where $\Lambda^{k} \mathfrak{g}$ is the $k$-th exterior power of $\mathfrak{g}$. This is the Chevalley-Eilenberg cochain complex.
We define the differential on $c \in C^{n}(\mathfrak{g}, M)$ as

$$
\begin{align*}
& d c\left(x_{1}, \cdots, x_{n+1}\right)=\sum_{i=1}^{n+1}(-1)^{i+1} x_{i} . c\left(x_{1}, \cdots, \hat{x}_{i}, \cdots, x_{n}\right)+ \\
& \sum_{1 \leq i<j \leq n+1}(-1)^{i+j} c\left(\left[x_{i}, x_{j}\right], x_{1}, \cdots, \hat{x}_{i}, \cdots, \hat{x}_{j}, \cdots, x_{n+1}\right), \tag{13}
\end{align*}
$$

where $x_{1}, \cdots, x_{n+1} \in \mathfrak{g}$, and $x . d$ means the module action of $\mathfrak{g}$ on $d \in M$.

## generalised quantum double

In general we want to modify $H^{*}$ in the double construction. We need a double cross product Hopf algebras.

## Definition 23

Two Hopf algebras $(A, H)$ form a matched pair if $H$ is a right A-module coalgebra ( $H \triangleleft A$ ) and A is a left H module coalgebra ( $\mathrm{H} \triangleright A$ ) obeying:

$$
\begin{align*}
(h g) \triangleleft a & =\sum\left(h \triangleleft\left(g_{1} \triangleright a_{1}\right)\right)\left(g_{2} \triangleleft a_{2}\right), 1 \triangleleft a=\epsilon(a)  \tag{14}\\
h \triangleright(a b) & =\sum\left(h_{1} \triangleright a_{1}\right)\left(\left(h_{2} \triangleleft a_{2}\right) \triangleright b\right), h \triangleright 1=\epsilon(h)  \tag{15}\\
\sum h_{1} \triangleleft a_{1} \otimes h_{2} \triangleright a_{2} & =\sum h_{2} \triangleleft a_{2} \otimes h_{1} \triangleright a_{1} . \tag{16}
\end{align*}
$$

In our case we will take the co-adjoint action $A d^{*}$ of H on $H^{*}$ (or $H^{*}$ on H ) given by:

$$
A d_{6}^{*}(\phi)=\sum \underset{\text { Sjabbo Schaveling }}{\phi_{2}\left\langle h_{1}\left(S \phi_{1}\right) \phi_{2}\right\rangle}
$$

## generalised quantum double

## Definition 24

A pair of matched Hopf algebras $(\mathrm{A}, \mathrm{H})$ forms a double cross product Hopf algebra built on $A \otimes H$ together with product and antipode

$$
\begin{equation*}
(a \otimes h)(b \otimes g)=\sum a\left(h_{1} \triangleright b_{1}\right) \otimes\left(h_{2} \triangleleft b_{2}\right) g \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
S(a \otimes h)=(1 \otimes S h)(S a \otimes 1) \tag{18}
\end{equation*}
$$

and tensor product unit, counit and coproduct $\Delta(c \otimes d)=c_{1} \otimes d_{1} \otimes c_{2} \otimes d_{2}$.

## Lie bialgebra cohomology

## Definition 25

(Lie algebra cohomology) Define the space of cocycles $Z^{P}(\mathfrak{g}, M):=\left\{c \in C^{P}(\mathfrak{g}, M) \mid d c=0\right\}$ and the space of coboundaries
$B^{p}(\mathfrak{g}, M):=\left\{c \in C^{p}(\mathfrak{g}, M) \mid \exists c^{\prime} \in C^{p-1}(\mathfrak{g}, M)\right.$ s.t. $\left.d c^{\prime}=c\right\}$.
Then define the Lie algebra cohomology as
$H^{P}(\mathfrak{g}, M):=Z^{p}(\mathfrak{g}, M) / B^{p}(\mathfrak{g}, M)$.
Note that the condition $\delta([X, Y])=X . \delta(Y)-Y . \delta(X)$ states
that $\delta$ is a 1-cocycle in the Lie algebra cohomology $H^{*}(\mathfrak{g}, \mathfrak{g} \otimes \mathfrak{g})$
with the adjoint action of $\mathfrak{g}$ on the tensor product module $\mathfrak{g} \otimes \mathfrak{g}$.

## Lie bialgebra cohomology

## Definition 25

(Lie algebra cohomology) Define the space of cocycles $Z^{P}(\mathfrak{g}, M):=\left\{c \in C^{p}(\mathfrak{g}, M) \mid d c=0\right\}$ and the space of coboundaries
$B^{p}(\mathfrak{g}, M):=\left\{c \in C^{p}(\mathfrak{g}, M) \mid \exists c^{\prime} \in C^{p-1}(\mathfrak{g}, M)\right.$ s.t. $\left.d c^{\prime}=c\right\}$.
Then define the Lie algebra cohomology as
$H^{P}(\mathfrak{g}, M):=Z^{p}(\mathfrak{g}, M) / B^{p}(\mathfrak{g}, M)$.
Note that the condition $\delta([X, Y])=X . \delta(Y)-Y . \delta(X)$ states that $\delta$ is a 1-cocycle in the Lie algebra cohomology $H^{*}(\mathfrak{g}, \mathfrak{g} \otimes \mathfrak{g})$, with the adjoint action of $\mathfrak{g}$ on the tensor product module $\mathfrak{g} \otimes \mathfrak{g}$.

## Hopf algebra cohomology

## Definition 26

(see p. 173 Chari-Pressley) Let H be a Hopf algebra. For $i, j \geq 1$, define $C^{i, j}:=\operatorname{Hom}_{k}\left(H^{\otimes i}, H^{\otimes j}\right)$, and define $d_{i, j}^{\prime}: C^{i, j} \rightarrow C^{i+1, j}$ and $d_{i, j}^{\prime \prime}: C^{i, j} \rightarrow C^{i, j+1}$ as follows (let $\gamma \in C^{i, j}$ ):

$$
\begin{array}{r}
\left(d^{\prime} \gamma\right)\left(a_{1} \otimes \cdots \otimes a_{i+1}\right):=\Delta^{(j)}\left(a_{1}\right) \cdot \gamma\left(a_{2} \otimes \cdots \otimes a_{i+1}\right)+ \\
\sum_{r=1}^{i}(-1)^{r} \gamma\left(a_{1} \otimes \cdots \otimes a_{r-1} a_{r+1} \otimes a_{r+2} \otimes \cdots \otimes a_{i+1}\right) \\
+(-1)^{i+1} \gamma\left(a_{1} \otimes \cdots \otimes a_{i}\right) \cdot \Delta^{(j)}\left(a_{i+1}\right)
\end{array}
$$

## Hopf algebra cohomology

## Definition 27

$$
\begin{aligned}
& \left(d^{\prime \prime} \gamma\right)\left(a_{1} \otimes \cdots \otimes a_{i}\right):= \\
& \left(\mu^{(i)} \otimes \gamma\right)\left(\Delta_{1, i+1}\left(a_{1}\right) \Delta_{2, i+2}\left(a_{2}\right) \cdots \Delta_{i, 2 i}\left(a_{i}\right)\right) \\
& +\sum_{r=1}^{j}(-1)^{r}\left(i d^{\otimes r-1} \otimes \Delta \otimes i d^{\otimes j-r}\right)\left(\gamma\left(a_{1} \otimes \cdots \otimes a_{i}\right)\right) \\
& +(-1)^{j+1}\left(\gamma \otimes \mu^{(i)}\right)\left(\Delta_{1, i+1}\left(a_{1}\right) \Delta_{2, i+2}\left(a_{2}\right) \cdots \Delta_{i, 2 i}\left(a_{i}\right)\right) .
\end{aligned}
$$

## Hopf algebra cohomology

in this definition, $\mu^{(i)}$ and $\Delta^{(j)}$ are defined as follows

$$
\begin{array}{r}
\mu^{(i)}\left(a_{1} \otimes \cdots \otimes a_{i}\right)=a_{1} \cdots a_{i} \\
\Delta^{(j)}(a)=(i d \otimes \cdots \otimes i d \otimes \Delta) \cdots(i d \otimes \Delta)(\Delta(a)) . \tag{20}
\end{array}
$$

The $\Delta_{i, j}$ means sending the coproduct to the ith and the jth coordinate.

Theorem 28
Let d' and d" be as in the definitions, then,


Definition 29
Let H be a Hopf algebra, and let d' and d" be as defined previously, and set $d=d_{i j}^{\prime}+(-1)^{i} d_{i j}^{\prime \prime}$ and $C^{n}=\oplus_{i+j=n+1} C^{i j}$ Then $d: C^{n} \rightarrow C^{n+1}$ and $(C, d)$ is a cochain complex with cohomology groups $H^{*}(H, H)$

## Hopf algebra cohomology

in this definition, $\mu^{(i)}$ and $\Delta^{(j)}$ are defined as follows

$$
\begin{array}{r}
\mu^{(i)}\left(a_{1} \otimes \cdots \otimes a_{i}\right)=a_{1} \cdots a_{i} \\
\Delta^{(j)}(a)=(i d \otimes \cdots \otimes i d \otimes \Delta) \cdots(i d \otimes \Delta)(\Delta(a)) . \tag{20}
\end{array}
$$

The $\Delta_{i, j}$ means sending the coproduct to the ith and the jth coordinate. The next proposition follows by direct computation

## Theorem 28

Let d' and d" be as in the definitions, then, $d^{\prime} \circ d^{\prime}=d^{\prime \prime} \circ d^{\prime \prime}=d^{\prime} \circ d^{\prime \prime}+d^{\prime \prime} \circ d^{\prime}=0$.

Definition 29
Let H be a Hopf algebra, and let d' and d" be as defined previously, and set $d=d_{i j}^{\prime}+(-1)^{i} d_{i j}^{\prime \prime}$ and $C^{n}=\oplus_{i+j=n+1} C^{i j}$ Then $d: C^{n} \rightarrow C^{n+1}$ and $(C, d)$ is a cochain complex with
cohomology groups $H^{*}(H, H)$

## Hopf algebra cohomology

in this definition, $\mu^{(i)}$ and $\Delta^{(j)}$ are defined as follows

$$
\begin{array}{r}
\mu^{(i)}\left(a_{1} \otimes \cdots \otimes a_{i}\right)=a_{1} \cdots a_{i} \\
\Delta^{(j)}(a)=(i d \otimes \cdots \otimes i d \otimes \Delta) \cdots(i d \otimes \Delta)(\Delta(a)) . \tag{20}
\end{array}
$$

The $\Delta_{i, j}$ means sending the coproduct to the ith and the jth coordinate. The next proposition follows by direct computation

## Theorem 28

Let d' and d'" be as in the definitions, then, $d^{\prime} \circ d^{\prime}=d^{\prime \prime} \circ d^{\prime \prime}=d^{\prime} \circ d^{\prime \prime}+d^{\prime \prime} \circ d^{\prime}=0$.

## Definition 29

Let H be a Hopf algebra, and let d' and d" be as defined previously, and set $d=d_{i j}^{\prime}+(-1)^{i} d_{i j}^{\prime \prime}$ and $C^{n}=\oplus_{i+j=n+1} C^{i j}$. Then $d: C^{n} \rightarrow C^{n+1}$ and $(\mathrm{C}, \mathrm{d})$ is a cochain complex with cohomology groups $H^{*}(H, H)$.

## Hopf algebra deformations

Let us write $a_{h}=a+a_{1} h+a_{2} h^{2}+\cdots$ for an element of $A_{h}$.
Because $\mu_{h}$ and $\Delta_{h}$ are $k[[h]]$-module maps, they are determined by their values on elements of $A_{h}$ for which $a_{1}=a_{2}=\cdots=0$. Write


$$
\begin{equation*}
\Delta_{h}(a)=\Delta(a)+\Delta_{1}(a) h+\Delta_{2}(a) h^{2}+. \tag{21}
\end{equation*}
$$

The (co-)associativity and algebra homomorphism conditions of the Hopf algebra deformation are

$$
\begin{align*}
\mu_{h}\left(\mu_{h}\left(a_{1} \otimes a_{2}\right) \otimes a_{3}\right) & =\mu_{h}\left(a_{1} \otimes \mu_{h}\left(a_{2} \otimes a_{3}\right)\right)  \tag{23}\\
\left(\Delta_{h} \otimes i d\right) \Delta_{h}(a) & =\left(i d \otimes \Delta_{h}\right) \Delta_{h}(a) \\
\Delta_{h}\left(\mu_{h}\left(a_{1} \otimes a_{2}\right)\right) & =\left(\mu_{h} \otimes \mu_{h}\right) \Delta_{h}^{13}\left(a_{1}\right) \Delta_{h}^{24}\left(a_{2}\right) .
\end{align*}
$$

## Hopf algebra deformations

Let us write $a_{h}=a+a_{1} h+a_{2} h^{2}+\cdots$ for an element of $A_{h}$. Because $\mu_{h}$ and $\Delta_{h}$ are $k[[h]]$-module maps, they are determined by their values on elements of $A_{h}$ for which $a_{1}=a_{2}=\cdots=0$. Write


$$
\Delta_{h}(a)=\Delta(a)+\Delta_{1}(a) h+\Delta_{2}(a) h^{2}+\cdots
$$

The (co-)associativity and algebra homomorphism conditions of the Hopf algebra deformation are


## Hopf algebra deformations

Let us write $a_{h}=a+a_{1} h+a_{2} h^{2}+\cdots$ for an element of $A_{h}$. Because $\mu_{h}$ and $\Delta_{h}$ are $k[[h]]$-module maps, they are determined by their values on elements of $A_{h}$ for which $a_{1}=a_{2}=\cdots=0$. Write

$$
\begin{equation*}
\mu_{h}\left(a \otimes a^{\prime}\right)=\mu\left(a \otimes a^{\prime}\right)+\mu_{1}\left(a \otimes a^{\prime}\right) h+\mu_{2}\left(a \otimes a^{\prime}\right) h^{2}+\cdots \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\Delta_{h}(a)=\Delta(a)+\Delta_{1}(a) h+\Delta_{2}(a) h^{2}+\cdots \tag{22}
\end{equation*}
$$

The (co-)associativity and algebra homomorphism conditions of
the Hopf algebra deformation are


## Hopf algebra deformations

Let us write $a_{h}=a+a_{1} h+a_{2} h^{2}+\cdots$ for an element of $A_{h}$. Because $\mu_{h}$ and $\Delta_{h}$ are $k[[h]]$-module maps, they are determined by their values on elements of $A_{h}$ for which $a_{1}=a_{2}=\cdots=0$. Write

$$
\begin{equation*}
\mu_{h}\left(a \otimes a^{\prime}\right)=\mu\left(a \otimes a^{\prime}\right)+\mu_{1}\left(a \otimes a^{\prime}\right) h+\mu_{2}\left(a \otimes a^{\prime}\right) h^{2}+\cdots \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\Delta_{h}(a)=\Delta(a)+\Delta_{1}(a) h+\Delta_{2}(a) h^{2}+\cdots \tag{22}
\end{equation*}
$$

The (co-)associativity and algebra homomorphism conditions of the Hopf algebra deformation are

$$
\begin{align*}
\mu_{h}\left(\mu_{h}\left(a_{1} \otimes a_{2}\right) \otimes a_{3}\right) & =\mu_{h}\left(a_{1} \otimes \mu_{h}\left(a_{2} \otimes a_{3}\right)\right)  \tag{23}\\
\left(\Delta_{h} \otimes i d\right) \Delta_{h}(a) & =\left(i d \otimes \Delta_{h}\right) \Delta_{h}(a) \\
\Delta_{h}\left(\mu_{h}\left(a_{1} \otimes a_{2}\right)\right) & =\left(\mu_{h} \otimes \mu_{h}\right) \Delta_{h}^{13}\left(a_{1}\right) \Delta_{h}^{24}\left(a_{2}\right)
\end{align*}
$$

## Hopf algebra deformations

## Definition 30

A pair of k -module $\operatorname{map}\left(\mu_{1}, \Delta_{1}\right)$ is called a deformation $\left(\bmod h^{2}\right)$ of a Hopf algebra H if it satisfies

$$
\begin{aligned}
& \mu_{1}\left(a_{1} a_{2} \otimes a_{3}\right)+\mu_{1}\left(a_{1} \otimes a_{2}\right) a_{3}=a_{1} \mu_{1}\left(a_{2} \otimes a_{3}\right) \\
& +\mu_{1}\left(a_{1} \otimes a_{2} a_{3}\right) \\
& (\Delta \otimes i d) \Delta_{1}(a)+\left(\Delta_{1} \otimes i d\right) \Delta(a)= \\
& (i d \otimes \Delta) \Delta_{1}(a)+\left(i d \otimes \Delta_{1}\right) \Delta(a) \\
& \Delta\left(\mu_{1}\left(a_{1} \otimes a_{2}\right)\right)+\Delta_{1}\left(a_{1} a_{2}\right)=\left(\mu \otimes \mu_{1}+\mu_{1} \otimes \mu\right) \Delta^{13}\left(a_{1}\right) \Delta^{24}\left(a_{2}\right) \\
& +\Delta_{1}\left(a_{1}\right) \Delta\left(a_{2}\right)+\Delta\left(a_{1}\right) \Delta_{1}\left(a_{2}\right) .
\end{aligned}
$$

Or more generally a deformation $\left(\bmod h^{n+1}\right)$ is a $2 n$-tuple $\left(\mu_{1}, \cdots, \mu_{n}, \Delta_{1}, \cdots, \Delta_{n}\right)$ which satisfies the (co-)associativity and algebra homomorphism conditions (mod $h^{n+1}$ )

## Hopf algebra deformations

## Definition 30

A pair of k -module $\operatorname{map}\left(\mu_{1}, \Delta_{1}\right)$ is called a deformation $\left(\bmod h^{2}\right)$ of a Hopf algebra H if it satisfies

$$
\begin{aligned}
& \mu_{1}\left(a_{1} a_{2} \otimes a_{3}\right)+\mu_{1}\left(a_{1} \otimes a_{2}\right) a_{3}=a_{1} \mu_{1}\left(a_{2} \otimes a_{3}\right) \\
& +\mu_{1}\left(a_{1} \otimes a_{2} a_{3}\right) \\
& (\Delta \otimes i d) \Delta_{1}(a)+\left(\Delta_{1} \otimes i d\right) \Delta(a)= \\
& (i d \otimes \Delta) \Delta_{1}(a)+\left(i d \otimes \Delta_{1}\right) \Delta(a) \\
& \Delta\left(\mu_{1}\left(a_{1} \otimes a_{2}\right)\right)+\Delta_{1}\left(a_{1} a_{2}\right)=\left(\mu \otimes \mu_{1}+\mu_{1} \otimes \mu\right) \Delta^{13}\left(a_{1}\right) \Delta^{24}\left(a_{2}\right) \\
& +\Delta_{1}\left(a_{1}\right) \Delta\left(a_{2}\right)+\Delta\left(a_{1}\right) \Delta_{1}\left(a_{2}\right)
\end{aligned}
$$

Or more generally a deformation $\left(\bmod h^{n+1}\right)$ is a $2 n$-tuple
$\left(\mu_{1}, \cdots, \mu_{n}, \Delta_{1}, \cdots, \Delta_{n}\right)$ which satisfies the (co-)associativity and
algebra homomorphism conditions $\left(\bmod h^{n+1}\right)$

## Hopf algebra deformations

## Definition 30

A pair of k -module $\operatorname{map}\left(\mu_{1}, \Delta_{1}\right)$ is called a deformation $\left(\bmod h^{2}\right)$ of a Hopf algebra H if it satisfies

$$
\begin{aligned}
& \mu_{1}\left(a_{1} a_{2} \otimes a_{3}\right)+\mu_{1}\left(a_{1} \otimes a_{2}\right) a_{3}=a_{1} \mu_{1}\left(a_{2} \otimes a_{3}\right) \\
& +\mu_{1}\left(a_{1} \otimes a_{2} a_{3}\right) \\
& (\Delta \otimes i d) \Delta_{1}(a)+\left(\Delta_{1} \otimes i d\right) \Delta(a)= \\
& (i d \otimes \Delta) \Delta_{1}(a)+\left(i d \otimes \Delta_{1}\right) \Delta(a) \\
& \Delta\left(\mu_{1}\left(a_{1} \otimes a_{2}\right)\right)+\Delta_{1}\left(a_{1} a_{2}\right)=\left(\mu \otimes \mu_{1}+\mu_{1} \otimes \mu\right) \Delta^{13}\left(a_{1}\right) \Delta^{24}\left(a_{2}\right) \\
& +\Delta_{1}\left(a_{1}\right) \Delta\left(a_{2}\right)+\Delta\left(a_{1}\right) \Delta_{1}\left(a_{2}\right)
\end{aligned}
$$

Or more generally a deformation $\left(\bmod h^{n+1}\right)$ is a 2 n -tuple $\left(\mu_{1}, \cdots, \mu_{n}, \Delta_{1}, \cdots, \Delta_{n}\right)$ which satisfies the (co-)associativity and algebra homomorphism conditions $\left(\bmod h^{n+1}\right)$

## Hopf algebra deformation

## Theorem 31

The following relations between Hopf algebra cohomology and Hopf algebra relations hold:
(1) there is a natural bijection between $H^{2}(H, H)$ and the set of equivalence classes of deformation $\left(\bmod h^{2}\right)$ of $H$,
> (2) If $H^{2}(H, H)=0$, every deformation of $H$ is trivial and
> © If $H^{3}(H, H)=0$, every deformation $\left(\bmod h^{2}\right)$ of $H$ extends to a genuine deformation of $H$.

In our case, $H^{3}(H, H)$, will not be trivial unfortunately.

## Hopf algebra deformation

## Theorem 31

The following relations between Hopf algebra cohomology and Hopf algebra relations hold:
(1) there is a natural bijection between $H^{2}(H, H)$ and the set of equivalence classes of deformation (mod $h^{2}$ ) of $H$,
(2) If $H^{2}(H, H)=0$, every deformation of $H$ is trivial and
(3) If $H^{3}(H, H)=0$, every deformation (mod $h^{2}$ ) of $H$ extends to a genuine deformation of $H$.

In our case, $H^{3}(H, H)$, will not be trivial unfortunately.

## Hopf algebra deformation

## Theorem 31

The following relations between Hopf algebra cohomology and Hopf algebra relations hold:
(1) there is a natural bijection between $H^{2}(H, H)$ and the set of equivalence classes of deformation $\left(\bmod h^{2}\right)$ of $H$,
(2) If $H^{2}(H, H)=0$, every deformation of $H$ is trivial and
(3) If $H^{3}(H, H)=0$, every deformation $\left(\bmod h^{2}\right)$ of $H$ extends to a genuine deformation of $H$.

In our case, $H^{3}(H, H)$, will not be trivial unfortunately.

## Hopf algebra deformation

## Theorem 31

The following relations between Hopf algebra cohomology and Hopf algebra relations hold:
(1) there is a natural bijection between $H^{2}(H, H)$ and the set of equivalence classes of deformation $\left(\bmod h^{2}\right)$ of $H$,
(2) If $H^{2}(H, H)=0$, every deformation of $H$ is trivial and
(3) If $H^{3}(H, H)=0$, every deformation $\left(\bmod h^{2}\right)$ of $H$ extends to a genuine deformation of $H$.

In our case, $H^{3}(H, H)$, will not be trivial unfortunately.

## Poisson-Lie groups

Part IIV: Relation to Poisson groups.

## Relation to Poisson groups

## Definition 32

(Lie Group) A Lie group $G$ is a smooth manifold $G$ without boundary that is a group with a smooth multiplication map $\mu: G \times G \rightarrow G$ and a smooth inversion map $i: G \rightarrow G$.

## Definition 33

(Poisson Structure) Let $M$ be a smooth manifold of finite dimension $m$, and denote with $C(M)$ the algebra of smooth real valued functions on $M$. A Poisson structure on $M$ is an $\mathbb{R}$ bilinear map $\{\}:, C(M) \times C(M) \rightarrow C(M)$ (the Poisson bracket) satisfying $\forall f_{1}, f_{2}, f_{3} \in C(M)$ :
(1) $\left\{f_{1}, f_{2}\right\}=-\left\{f_{2}, f_{1}\right\}$
(2) $\left\{f_{1},\left\{f_{2}, f_{3}\right\}\right\}+\left\{f_{3},\left\{f_{1}, f_{2}\right\}\right\}+\left\{f_{2},\left\{f_{3}, f_{1}\right\}\right\}=0$
(3) $\left\{f_{1} f_{2}, f_{3}\right\}=\left\{f_{1}, f_{3}\right\} f_{2}+f_{1}\left\{f_{2}, f_{3}\right\}$

## Relation to Poisson groups

## Definition 34

(Poisson Maps) A smooth map $F: M \rightarrow N$ between Poisson manifolds is a Poisson map if it preserves the Poisson brackets of $M$ and $N:\left\{f_{1}, f_{2}\right\}_{M} \circ F=\left\{f_{1} \circ F, f_{2} \circ F\right\}_{N}$.
(Product Poisson structure) The Product Poisson structure is given by $\left\{f_{1}(x, y), f_{2}\right\}_{M \times N}(x, y)=$
$\left\{f_{1}(., y), f_{2}(., y)\right\}_{M}(x)+\left\{f_{1}(x, .), f_{2}(x, .)\right\}_{N}(y)$, where $f_{1}, f_{2} \in C(M \times N)$.

## Definition 35

A Poisson-Lie group G is a Lie group which also has a Poisson structure that is compatible with the Lie structure, i.e. the multiplication map $\mu: G \times G \rightarrow G$ is a poisson map. A homomorphism of Poisson Lie groups is a homomorphism of Lie groups that is also a Poisson map.

## Relation to Poisson groups

## Theorem 36

Define on a Poisson Lie group $\operatorname{GAd}(x)(y)=x y x^{-1}$ for all $x, y \in G$. Then the tangent space at the unit element e of $G$ is a Liealgebra $\mathfrak{g}$ with Lie bracket $[X, Y]=T_{e} A d(X)(Y)$ cobracket $\delta$ by the relation


Lie bialgebra.
Proof: Check the definitions. (See "A Guide to Quantum Groups' by Chari, V. and Pressley, A., page 25.)
Note: if the Lie algebra arising in this case is quasitriangular, i.e. if $\delta$ is a coboundary, then one can use the classical r-matrix to define the Poisson bracket, and one can define a classical R-matrix $R \in G \times G$ which is a solution of the Quantum Yang Baxter equation: $R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12}$

## Relation to Poisson groups

## Theorem 36

Define on a Poisson Lie group $\operatorname{Gd}(x)(y)=x y x^{-1}$ for all $x, y \in G$. Then the tangent space at the unit element e of $G$ is a Liealgebra $\mathfrak{g}$ with Lie bracket $[X, Y]=T_{e} \operatorname{Ad}(X)(Y)$. Define the cobracket $\delta$ by the relation
$\left\langle X, d\left\{f_{1}, f_{2}\right\}_{e}\right\rangle=\left\langle\delta(X),\left(d f_{1}\right)_{1} \otimes\left(d f_{2}\right)_{e}\right\rangle$. Then $\left(T_{e} G,[],, \delta\right)$ is a Lie bialgebra.

Proof: Check the definitions. (See "A Guide to Quantum Groups" by Chari, V. and Pressley, A., page 25.)
Note: if the Lie algebra arising in this case is quasitriangular, i.e. if $\delta$ is a coboundary, then one can use the classical r-matrix to define the Poisson bracket, and one can define a classical R-matrix $R \in G \times G$ which is a solution of the Quantum Yang Baxter equation: $R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12}$

## Relation to Poisson groups

## Theorem 36

Define on a Poisson Lie group $\operatorname{Gd}(x)(y)=x y x^{-1}$ for all $x, y \in G$. Then the tangent space at the unit element e of $G$ is a Liealgebra $\mathfrak{g}$ with Lie bracket $[X, Y]=T_{e} \operatorname{Ad}(X)(Y)$. Define the cobracket $\delta$ by the relation
$\left\langle X, d\left\{f_{1}, f_{2}\right\}_{e}\right\rangle=\left\langle\delta(X),\left(d f_{1}\right)_{1} \otimes\left(d f_{2}\right)_{e}\right\rangle$. Then $\left(T_{e} G,[],, \delta\right)$ is a Lie bialgebra.

Proof: Check the definitions. (See "A Guide to Quantum Groups" by Chari, V. and Pressley, A., page 25.)
Note: if the Lie algebra arising in this case is quasitriangular, i.e. if $\delta$ is a coboundary, then one can use the classical r-matrix to define the Poisson bracket, and one can define a classical R-matrix $R \in G \times G$ which is a solution of the Quantum Yang Baxter
equation: $R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12}$

## Relation to Poisson groups

## Theorem 36

Define on a Poisson Lie group $\operatorname{GAd}(x)(y)=x y x^{-1}$ for all $x, y \in G$. Then the tangent space at the unit element e of $G$ is a Liealgebra $\mathfrak{g}$ with Lie bracket $[X, Y]=T_{e} \operatorname{Ad}(X)(Y)$. Define the cobracket $\delta$ by the relation
$\left\langle X, d\left\{f_{1}, f_{2}\right\}_{e}\right\rangle=\left\langle\delta(X),\left(d f_{1}\right)_{1} \otimes\left(d f_{2}\right)_{e}\right\rangle$. Then $\left(T_{e} G,[],, \delta\right)$ is a Lie bialgebra.

Proof: Check the definitions. (See "A Guide to Quantum Groups" by Chari, V. and Pressley, A., page 25.)
Note: if the Lie algebra arising in this case is quasitriangular, i.e. if $\delta$ is a coboundary, then one can use the classical $r$-matrix to define the Poisson bracket, and one can define a classical R-matrix $R \in G \times G$ which is a solution of the Quantum Yang Baxter equation: $R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12}$

## Relation to Poisson groups

## Definition 37

(Poisson algebra) A Poisson algebra over $k$ is a commutative algebra A over k with a skew-symmetric $k$-module map $\{\}:, A \otimes A \rightarrow A$ (Poisson bracket) such that $\forall a, b, c \in A$ :
(1) $\{a,\{b, c\}\}+\{c,\{a, b\}\}+\{b,\{c, a\}\}=0$,
(2) $\{a b, c\}=\{a, c\} b+a\{b, c\}$.

A Poisson Hopf algebra is a Poisson algebra which is also a Hopf algebra, such that the Poisson structure and the Hopf structure are compatible in the following way:

$$
\forall a, b \in A,\{\Delta(a), \Delta(b)\}_{A \otimes A}=\Delta\left(\{a, b\}_{A}\right)
$$

where
$\left\{a_{1} \otimes b_{1}, a_{2} \otimes b_{2}\right\}_{A \otimes A}=\left\{a_{1}, a_{2}\right\}_{A} \otimes b_{1} b_{2}+a_{1} a_{2} \otimes\left\{b_{1}, b_{2}\right\}_{A}$.
The Poisson structure of a Poisson-Lie group is a Poisson algebra.

## Lie algebra cohomology from Lie group de rahm complex

## Theorem 38

The Chevalley-Eilenberg differential on $\mathfrak{g}$, where $\mathfrak{g}$ is the Lie algebra belonging to the Lie group G, is equal to the De Rham differential $\Omega^{*}(G)$ restricted to the space of left invariant differential forms. (See wikipedia: Lie algebra cohomology)

Note that the object dual to $U(\mathfrak{g})$, the regular functions $F(G)$ on a Poisson-Lie group G,which is a Poisson algebra, is only the completion of a Poisson-Hopf algebra, due to
$F(G \times G) \neq F(G) \otimes F(G)$. This can be solved by looking at the subalgebra of finite dimensional representations $\operatorname{Rep}(G)$ of $F(G)$, which is dense in $F(G)$.

## Relation between Univeral enveloping algebra and Poisson algebra on a Poisson Lie group

adsdas

## Geometrical Quantization of Poisson algebras

adsdas

