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Lie bialgebras

Part I: Lie bialgebras and the classical double
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Lie bialgebras

Definition 1

(Lie bialgebra) A Lie bi algebra (g, [, ], δ) is a vector space L over a
field k together with a bilinear map [, ] : g⊗ g→ g (the bracket)
and a linear map δ : g→ g⊗ g (the cobracket) satisfying the
following axioms:

1 [X ,X ] = 0 ∀X ∈ g

2 [X , [Y ,Z ]] + [Y , [Z ,X ]] + [Z , [X ,Y ]] = 0 ∀X ,Y ,Z ∈ g

3 δ is skew-symetric

4 δ∗ : g∗ ⊗ g∗ → g∗ is a bracket on the dual Lie algebra g∗

5 δ([X ,Y ]) = X .δ(Y )− Y .δ(X )

In this notation, X .δ(Y ) = (adX ⊗ 1 + 1⊗ adX )(δ(Y )), and
adX (Y ) = [X ,Y ], for all X ,Y ∈ g, and δ(a) = ∑ a1 ⊗ a2.

Sjabbo Schaveling Quantum Enveloping Algebras and Lie bi-algebras



Lie bialgebras

Definition 1

(Lie bialgebra) A Lie bi algebra (g, [, ], δ) is a vector space L over a
field k together with a bilinear map [, ] : g⊗ g→ g (the bracket)
and a linear map δ : g→ g⊗ g (the cobracket) satisfying the
following axioms:

1 [X ,X ] = 0 ∀X ∈ g

2 [X , [Y ,Z ]] + [Y , [Z ,X ]] + [Z , [X ,Y ]] = 0 ∀X ,Y ,Z ∈ g

3 δ is skew-symetric

4 δ∗ : g∗ ⊗ g∗ → g∗ is a bracket on the dual Lie algebra g∗

5 δ([X ,Y ]) = X .δ(Y )− Y .δ(X )

In this notation, X .δ(Y ) = (adX ⊗ 1 + 1⊗ adX )(δ(Y )), and
adX (Y ) = [X ,Y ], for all X ,Y ∈ g, and δ(a) = ∑ a1 ⊗ a2.

Sjabbo Schaveling Quantum Enveloping Algebras and Lie bi-algebras



Lie bialgebras

Definition 1

(Lie bialgebra) A Lie bi algebra (g, [, ], δ) is a vector space L over a
field k together with a bilinear map [, ] : g⊗ g→ g (the bracket)
and a linear map δ : g→ g⊗ g (the cobracket) satisfying the
following axioms:

1 [X ,X ] = 0 ∀X ∈ g

2 [X , [Y ,Z ]] + [Y , [Z ,X ]] + [Z , [X ,Y ]] = 0 ∀X ,Y ,Z ∈ g

3 δ is skew-symetric

4 δ∗ : g∗ ⊗ g∗ → g∗ is a bracket on the dual Lie algebra g∗

5 δ([X ,Y ]) = X .δ(Y )− Y .δ(X )

In this notation, X .δ(Y ) = (adX ⊗ 1 + 1⊗ adX )(δ(Y )), and
adX (Y ) = [X ,Y ], for all X ,Y ∈ g, and δ(a) = ∑ a1 ⊗ a2.

Sjabbo Schaveling Quantum Enveloping Algebras and Lie bi-algebras



Lie bialgebras

Definition 1

(Lie bialgebra) A Lie bi algebra (g, [, ], δ) is a vector space L over a
field k together with a bilinear map [, ] : g⊗ g→ g (the bracket)
and a linear map δ : g→ g⊗ g (the cobracket) satisfying the
following axioms:

1 [X ,X ] = 0 ∀X ∈ g

2 [X , [Y ,Z ]] + [Y , [Z ,X ]] + [Z , [X ,Y ]] = 0 ∀X ,Y ,Z ∈ g

3 δ is skew-symetric

4 δ∗ : g∗ ⊗ g∗ → g∗ is a bracket on the dual Lie algebra g∗

5 δ([X ,Y ]) = X .δ(Y )− Y .δ(X )

In this notation, X .δ(Y ) = (adX ⊗ 1 + 1⊗ adX )(δ(Y )), and
adX (Y ) = [X ,Y ], for all X ,Y ∈ g, and δ(a) = ∑ a1 ⊗ a2.

Sjabbo Schaveling Quantum Enveloping Algebras and Lie bi-algebras



Lie bialgebras

Definition 1

(Lie bialgebra) A Lie bi algebra (g, [, ], δ) is a vector space L over a
field k together with a bilinear map [, ] : g⊗ g→ g (the bracket)
and a linear map δ : g→ g⊗ g (the cobracket) satisfying the
following axioms:

1 [X ,X ] = 0 ∀X ∈ g

2 [X , [Y ,Z ]] + [Y , [Z ,X ]] + [Z , [X ,Y ]] = 0 ∀X ,Y ,Z ∈ g

3 δ is skew-symetric

4 δ∗ : g∗ ⊗ g∗ → g∗ is a bracket on the dual Lie algebra g∗

5 δ([X ,Y ]) = X .δ(Y )− Y .δ(X )

In this notation, X .δ(Y ) = (adX ⊗ 1 + 1⊗ adX )(δ(Y )), and
adX (Y ) = [X ,Y ], for all X ,Y ∈ g, and δ(a) = ∑ a1 ⊗ a2.

Sjabbo Schaveling Quantum Enveloping Algebras and Lie bi-algebras



Lie bialgebras

Definition 1

(Lie bialgebra) A Lie bi algebra (g, [, ], δ) is a vector space L over a
field k together with a bilinear map [, ] : g⊗ g→ g (the bracket)
and a linear map δ : g→ g⊗ g (the cobracket) satisfying the
following axioms:

1 [X ,X ] = 0 ∀X ∈ g

2 [X , [Y ,Z ]] + [Y , [Z ,X ]] + [Z , [X ,Y ]] = 0 ∀X ,Y ,Z ∈ g

3 δ is skew-symetric

4 δ∗ : g∗ ⊗ g∗ → g∗ is a bracket on the dual Lie algebra g∗

5 δ([X ,Y ]) = X .δ(Y )− Y .δ(X )

In this notation, X .δ(Y ) = (adX ⊗ 1 + 1⊗ adX )(δ(Y )), and
adX (Y ) = [X ,Y ], for all X ,Y ∈ g, and δ(a) = ∑ a1 ⊗ a2.

Sjabbo Schaveling Quantum Enveloping Algebras and Lie bi-algebras



Lie bialgebras

Definition 1

(Lie bialgebra) A Lie bi algebra (g, [, ], δ) is a vector space L over a
field k together with a bilinear map [, ] : g⊗ g→ g (the bracket)
and a linear map δ : g→ g⊗ g (the cobracket) satisfying the
following axioms:

1 [X ,X ] = 0 ∀X ∈ g

2 [X , [Y ,Z ]] + [Y , [Z ,X ]] + [Z , [X ,Y ]] = 0 ∀X ,Y ,Z ∈ g

3 δ is skew-symetric

4 δ∗ : g∗ ⊗ g∗ → g∗ is a bracket on the dual Lie algebra g∗

5 δ([X ,Y ]) = X .δ(Y )− Y .δ(X )

In this notation, X .δ(Y ) = (adX ⊗ 1 + 1⊗ adX )(δ(Y )), and
adX (Y ) = [X ,Y ], for all X ,Y ∈ g, and δ(a) = ∑ a1 ⊗ a2.

Sjabbo Schaveling Quantum Enveloping Algebras and Lie bi-algebras



Lie bialgebras

Definition 1

(Lie bialgebra) A Lie bi algebra (g, [, ], δ) is a vector space L over a
field k together with a bilinear map [, ] : g⊗ g→ g (the bracket)
and a linear map δ : g→ g⊗ g (the cobracket) satisfying the
following axioms:

1 [X ,X ] = 0 ∀X ∈ g

2 [X , [Y ,Z ]] + [Y , [Z ,X ]] + [Z , [X ,Y ]] = 0 ∀X ,Y ,Z ∈ g

3 δ is skew-symetric

4 δ∗ : g∗ ⊗ g∗ → g∗ is a bracket on the dual Lie algebra g∗

5 δ([X ,Y ]) = X .δ(Y )− Y .δ(X )

In this notation, X .δ(Y ) = (adX ⊗ 1 + 1⊗ adX )(δ(Y )), and
adX (Y ) = [X ,Y ], for all X ,Y ∈ g, and δ(a) = ∑ a1 ⊗ a2.

Sjabbo Schaveling Quantum Enveloping Algebras and Lie bi-algebras



Lie bialgebras

Definition 1

(Lie bialgebra) A Lie bi algebra (g, [, ], δ) is a vector space L over a
field k together with a bilinear map [, ] : g⊗ g→ g (the bracket)
and a linear map δ : g→ g⊗ g (the cobracket) satisfying the
following axioms:

1 [X ,X ] = 0 ∀X ∈ g

2 [X , [Y ,Z ]] + [Y , [Z ,X ]] + [Z , [X ,Y ]] = 0 ∀X ,Y ,Z ∈ g

3 δ is skew-symetric

4 δ∗ : g∗ ⊗ g∗ → g∗ is a bracket on the dual Lie algebra g∗

5 δ([X ,Y ]) = X .δ(Y )− Y .δ(X )

In this notation, X .δ(Y ) = (adX ⊗ 1 + 1⊗ adX )(δ(Y )), and
adX (Y ) = [X ,Y ], for all X ,Y ∈ g, and δ(a) = ∑ a1 ⊗ a2.

Sjabbo Schaveling Quantum Enveloping Algebras and Lie bi-algebras



Lie bialgebras

δ is a 1 cocycle, so look at the cases when δ is a coboundary:
δ(X ) = X .r for some r ∈ g⊗ g, and for all X ∈ g, where r obeys
(if we write r = ∑ r12 = ∑ r [1] ⊗ r [2]):

1 r12 + r21 is a invariant under the action of g.

2 [r12, r13] + [r12, r23] + [r13, r23] = 0.

Here [r12, s13] = ∑[r [1], s [1]]⊗ r [2] ⊗ s [2].Conditon 2 is called the
classical Yang-Baxter equation, and r is called the classical
r-matrix. If the Lie-bialgebra structure arises from a classical
r-matrix, then we call the Lie bialgebra quasitriangular.
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Lie bialgebra pairing

(page 350 of Majid)

Definition 2

(Lie bialgebra pairing) Let (g, [, ], δ) be a finite dimensional Lie
bialgebra. Let g∗ be the dual of g viewed as vectorspace with
pairing 〈, 〉 : g∗ × g→ k . Then the following relations define a Lie
bialgebra structure on g∗:

〈[a, b], c〉 := 〈a⊗ b, δc〉 (1)

〈δa, b⊗ c〉 := 〈a, [c , d ]〉 (2)

for all a, b ∈ g∗, and c, d ∈ g. Two Lie bialgebras are said to be
dually paired if their Lie brackets and Lie cobrackets are related in
this way.
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Classical double

The theorem is also true for infinite dimensional pairing.

Definition 3

Let g be a finite dimensional Lie bialgebra with dual g∗. Then the
classical double D(g) is a quasitriangular Lie bialgebra built on the
vector space g∗ ⊕ g with bracket, cobracket and r-matrix (here ea
is a basis of g and f a its dual basis):

[a⊕ b, c ⊕ d ]D = ([c , a] + ∑ c1〈c2, b〉 − a1〈a2, d〉) (3)

⊕ ([b, d ] + ∑ b1〈c, b2〉 − d1〈a, d2〉)
δD(a⊕ b) = ∑(a1 ⊕ 0)⊗ (a2 ⊕ 0)+ (4)

∑(0⊕ b1)⊗ (0⊕ b2),

rD = ∑
a

(f a ⊕ 0)⊗ (0⊕ ea) (5)

Note that g∗ has the negated (opposite) bracket in D(g).
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useful identities

Let a, d ∈ g∗ and b, c ∈ g. On D(g) define a pairing
〈, 〉D : D(g)∗ ×D(g)→ k : 〈a⊕ b, d ⊕ c〉D = 〈a, c〉+ 〈d , b〉.
Then

〈[a, b]D , c〉D = 〈a, [b, c ]〉, 〈a, [d , c ]D〉D = 〈[d , a], c〉.
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Hopf Algebras

Part II: Hopf algebras and the quantum double.
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Hopf Algebras

Definition 4

((co-)algebra) An algebra (H, ·, µ) over k is a vector space
(H,+, k) with a compatible multiplication · and unit map µ where

1 the multiplication · : H ⊗H → H is an associative, linear map
which preserves the unit,

2 the unit map µ : k → H is a linear map with property
· ◦ µ⊗ id(i ⊗ a) = i · a, and
· ◦ id ⊗ µ(a⊗ i) = i · a ∀a ∈ H, i ∈ k (or µ(1) = 1H).

A coalgebra (H, ∆, ε) over k is a vector space (H,+, k) with a
compatible comultiplication ∆ and co-unit ε where

1 the comultiplication ∆ : H → H ⊗H is a linear, coassociative
map, where coassociativity means ∆⊗ id ◦ ∆ = id ⊗ ∆ ◦ ∆
and ∆(1H) = 1H ⊗ 1H ,

2 the counit ε : H → k has property
(id ⊗ ε) ◦ ∆(h) = (ε⊗ id) ◦ ∆(h) = h (so ε(1H) = 1).
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Hopf Algebras

Note that k always denotes a field of characteristic 0.

Definition 5

A Hopf algebra (H,+, ·, µ, ∆, ε, S , k) over k is a vector space
(H,+, k) which is both an algebra (H, ·, µ) and a coalgebra
(H, ∆, ε), and is equipped with a linear antipode map S : H → H
(which is an anti-homomorphism) obeying

1 ∆(gh) = ∆(g)∆(h),
2 ε(gh) = ε(g)ε(h),

3 ·(S ⊗ id) ◦ ∆ = ·(id ⊗ S) ◦ ∆ = µ ◦ ε
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Hopf Algebras

Definition 6

(Quasitriangular Hopf algebras) A Quasitriangular Hopf Algebra is
a pair (H,R), where H is a Hopf algebra and R ∈ H ⊗H is
invertible and obeys

1 (∆⊗ id)(R) = R12R23 and (id ⊗ ∆)(R) = R13R12

2 τ ◦ ∆(h) = R∆(h)R−1, ∀h ∈ H, where τ is the transposition
map.

Writing R = ∑R (1) ⊗ R (2), we denote
Rij = ∑ 1⊗ · · · ⊗ R (1) ⊗ 1 · · · ⊗ R (2) ⊗ · · · ⊗ 1

Definition 7

((Co-)commutative) A Hopf algebra is said to be commutative it is
commutative as an algebra, and cocommutative if the co-product
∆ obeys τ ◦ ∆ = ∆.
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Hopf Algebras

Theorem 8

Let (H,R) be a quasitriangular Hopf algebra, then R solves the
equation: R12R13R23 = R23R13R12, called the Quantum
Yang-Baxter equation.
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Ribbon Hopf algebras

Let us write R = ∑R (1) ⊗ R (2). Then define
u = ∑(SR (2))R (1) ∈ H, and v = Su = ∑R (1)SR (2).

Theorem 9

Let (H,R) be a quasitriangular Hopf algebra with antipode S. Then
S is invertible and S2(h) = uhu−1 for all h ∈ H, and
S−2(h) = vhv−1.

Definition 10

(Ribbon element) A quasitriangular Hopf algebra is called a ribbon
Hopf algebra if the element uv has a central square root ν, called
the ribbon element, such that ν2 = vu, Sν = ν, εν = 1 and
∆ν = Q−1(ν⊗ ν), where Q = R21R.
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Hopf algebra pairing

Definition 11

(Hopf Pairing) Let G, H be a Hopf algebras. H and G are said to
be dually paired as Hopf algebras if they are dually paired as vector
spaces, and if the multiplication, co multiplication, antipode and
counit behave in the following way under the pairing 〈, 〉:

〈ab, c〉 = 〈a⊗ b, ∆c〉 (6)

〈∆a, c ⊗ d〉 = 〈a, cd〉 (7)

〈1, c〉 = ε(c) (8)

〈a, 1〉 = ε(a) (9)

〈Sa, c〉 = 〈a, Sc〉 (10)

for all a, b ∈ G and for all c , d ∈ H. G and H are a strictly dual
pair if the pairing is nondegenerate, i.e. there are no nonzero
elements in G or H that pair to zero with every element in the
dually paired algebra.
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Quantum Double

This works also for an infinite dimensional pairing. H∗op is the
Hopf algebra H∗ with the opposite multiplication.
We write ∆(a) = a1 ⊗ a2, omitting the summation.

Theorem 12

(Quantum Double) Let H be a finite dimensional Hopf algebra.
The quantum double D(H) is a quasitriangular Hopf algebra
generated by H,H∗op as sub Hopf algebras with the quasitriangular
structure R = ∑a f

a ⊗ ea, where {ea} is the basis of H and {f a}
its dual basis. D(H) is realised on the vectorspace H∗ ⊗H with
product (a⊗ h)(b⊗ g) = ∑ b2a⊗ h2g〈Sh1, b1〉〈h3, b3〉, and
tensor product unit, counit and coproduct.
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Quantized Universal Enveloping algebras

Part III: Quantization of Lie and Hopf algebras.
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Universal enveloping algebra

Definition 13

Let g be a Lie algebra over k.The universal enveloping algebra U(g)
is the noncommutative algebra generated by 1 and the elements of
g (the tensor algebra over k) modulo the relations [a, b] = ab− ba
for all a, b ∈ g. The coproduct, counit and antipode are given by

∆a = a⊗ 1 + 1⊗ a, εa = 0,Sa = −a,

where ∆, ε are extended as algebra maps, and S as an antialgebra
map.
Note that this algebra is cocommutative, so we can take the
R-matrix to be trivial to make U(g) a quasitriangular Hopfalgebra.
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Quantum Universal enveloping algebras

Definition 14

A deformation of a Hopf algebra (H, i , µ, ε, ∆,S) over a field k is a
topological Hopf algebra (Hh, ih, µh, εh, ∆h, Sh) over the ring k [[h]]
of formal power series in h over k, such that

1 Hh is isomorphic to H [[h]] as a k [[h]] module.

2 µh = µ mod h, ∆h = ∆ mod h.

Two Hopf algebra deformations are said to be equivalent if there is
an isomorphism fh of Hopf algebras over k [[h]] which is the
identity (mod h).

Definition 15

(Quantized universal enveloping algebra (QUE)) A Hopf algebra
deformation of the universal enveloping algebra U(g) of a Lie
algebra g is called a quantized universal enveloping algebra, or
QUE algebra.

Sjabbo Schaveling Quantum Enveloping Algebras and Lie bi-algebras



Quantum Universal enveloping algebras

Definition 14

A deformation of a Hopf algebra (H, i , µ, ε, ∆,S) over a field k is a
topological Hopf algebra (Hh, ih, µh, εh, ∆h, Sh) over the ring k [[h]]
of formal power series in h over k, such that

1 Hh is isomorphic to H [[h]] as a k [[h]] module.

2 µh = µ mod h, ∆h = ∆ mod h.

Two Hopf algebra deformations are said to be equivalent if there is
an isomorphism fh of Hopf algebras over k [[h]] which is the
identity (mod h).

Definition 15

(Quantized universal enveloping algebra (QUE)) A Hopf algebra
deformation of the universal enveloping algebra U(g) of a Lie
algebra g is called a quantized universal enveloping algebra, or
QUE algebra.

Sjabbo Schaveling Quantum Enveloping Algebras and Lie bi-algebras



Quantum Universal enveloping algebras

Definition 14

A deformation of a Hopf algebra (H, i , µ, ε, ∆,S) over a field k is a
topological Hopf algebra (Hh, ih, µh, εh, ∆h, Sh) over the ring k [[h]]
of formal power series in h over k, such that

1 Hh is isomorphic to H [[h]] as a k [[h]] module.

2 µh = µ mod h, ∆h = ∆ mod h.

Two Hopf algebra deformations are said to be equivalent if there is
an isomorphism fh of Hopf algebras over k [[h]] which is the
identity (mod h).

Definition 15

(Quantized universal enveloping algebra (QUE)) A Hopf algebra
deformation of the universal enveloping algebra U(g) of a Lie
algebra g is called a quantized universal enveloping algebra, or
QUE algebra.

Sjabbo Schaveling Quantum Enveloping Algebras and Lie bi-algebras



Quantum Universal enveloping algebras

Definition 14

A deformation of a Hopf algebra (H, i , µ, ε, ∆,S) over a field k is a
topological Hopf algebra (Hh, ih, µh, εh, ∆h, Sh) over the ring k [[h]]
of formal power series in h over k, such that

1 Hh is isomorphic to H [[h]] as a k [[h]] module.

2 µh = µ mod h, ∆h = ∆ mod h.

Two Hopf algebra deformations are said to be equivalent if there is
an isomorphism fh of Hopf algebras over k [[h]] which is the
identity (mod h).

Definition 15

(Quantized universal enveloping algebra (QUE)) A Hopf algebra
deformation of the universal enveloping algebra U(g) of a Lie
algebra g is called a quantized universal enveloping algebra, or
QUE algebra.

Sjabbo Schaveling Quantum Enveloping Algebras and Lie bi-algebras



Quantum Universal enveloping algebras

Definition 14

A deformation of a Hopf algebra (H, i , µ, ε, ∆,S) over a field k is a
topological Hopf algebra (Hh, ih, µh, εh, ∆h, Sh) over the ring k [[h]]
of formal power series in h over k, such that

1 Hh is isomorphic to H [[h]] as a k [[h]] module.

2 µh = µ mod h, ∆h = ∆ mod h.

Two Hopf algebra deformations are said to be equivalent if there is
an isomorphism fh of Hopf algebras over k [[h]] which is the
identity (mod h).

Definition 15

(Quantized universal enveloping algebra (QUE)) A Hopf algebra
deformation of the universal enveloping algebra U(g) of a Lie
algebra g is called a quantized universal enveloping algebra, or
QUE algebra.

Sjabbo Schaveling Quantum Enveloping Algebras and Lie bi-algebras



co-Poisson Hopf algebras

We have extended the bracket of a Lie bialgebra g to U(g), and we
have equipped U(g) with a Hopf algebra structure, but we have
not yet extended δ to U(g).

Definition 16

(Co-Poisson Hopf algebras) A Co-Poisson Hopf algebra over a
commutative ring k is a co-commutative Hopf algebra H with a
skew symmetric k-module map δ : H → H ⊗H (the poisson
co-bracket) satisfying:

1 σ ◦ δ⊗ id ◦ δ = 0, where σ means summing over cyclic
permutations of the tensor product.

2 (∆⊗ id)δ = (id ⊗ δ)∆ + σ23(δ⊗ id)∆, where σ23 means
switching the second and third factor.

3 For all a, b ∈ H, δ(ab) = δ(a)∆(b) + ∆(a)δ(b).
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co-Poisson Hopf algebras

Theorem 17

Let g be a Lie bialgebra over a field k of characteristic zero. Then
the Lie co-bracket extends uniquely to a Poisson co-bracket δ on
U(g), making U(g) a co-Poisson Hopf algebra.
Conversely, if U(g) has a Poisson co-bracket δ, then δ|g is a Lie
cobracket on g.
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Quantum Universal enveloping algebras

Definition 18

(Quantization of Hopf algebra) Let A be a cocommutative
co-Poisson-Hopf algebra over a field k of characteristic zero, and
let δ be its Poisson co-bracket. A Quantization of A is a Hopf
algebra deformation Ah of A such that

δ(x) =
∆h(a)− ∆op

h (a)

h
(mod h),

where x ∈ A and a ∈ Ah such that x = a (mod h), and
∆op = τ ◦ ∆ is the opposite co-bracket.
A quantization of a Lie bialgebra (g, δ) is a quantization Uh(g) of
its universal enveloping algebra U(g) equipped with the
co-Poisson-Hopf structure. Conversely, (g, δ) is called the classical
limit of the QUE algebra Uh(g).
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Quantum Universal enveloping algebras

Let us state a few things:

Theorem 19

The quantization of a Lie bi algebra is a quantized universal
enveloping algebra.

Theorem 20

Let (Uh(g),Rh) be a QUE algebra that is quasitriangular as a Hopf
algebra, and has Rh = 1⊗ 1 (mod h). Then if we define
r ∈ U(g)⊗ U(g) as r = Rh−1⊗1

h (mod h), r ∈ g⊗ g, and the
classical limit of Uh(g) is a quasitriangular Lie bialgebra with
classical r-matrix r.
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Existence

The following theorem is due to Drinfeld (1983).

Theorem 21

Let g be a finite dimensional real Lie algebra, and let r ∈ g⊗ g be
the classical r-matrix. Then there exists a deformation Uh(g) of
U(g) whose classical limit is g with the Lie bialgebra structure
defined by r. Moreover, Uh(g) is a triangular Hopf algebra (i.e. a
quasitriangular Hopf algebra with R21 = R−1) and is isomorphic to
U(g)[[h]] as an algebra over R[[h]].
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Example: the Heisenberg algebra

Part IV: the quantum Heisenberg algebra.
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Summary

We have

1 defined a Hopf algebra and its deformation,

2 defined a Lie bialgebra and its quantization,

3 looked at quasitriangular Hopf algebras and Lie bialgebras and
the relations between the two,

4 worked out the double of the Heisenberg algebra.

5 defined the Quantum Double to make quasitriangular QUE
algebras.
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Example: Uq(sl2)

Part V: Uq(sl2)
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Running example: sl2(C)

Let us consider the Lie algebra sl2(C) generated by {H,X+,X−}
and the relations

[H,X±] = ±2X±, [X+,X−] = H.

Then sl2 becomes a quasitriangular Lie bialgebra if we set

δ(H) = 0, δ(X±) = X±∧H = X±⊗H−H⊗X±, r = X+∧X−.

Note that we can define the Lie bi-subalgebras b± = span{H,X±}
of sl2(C).
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Example: U}(sl2); quantization of b±

To find ∆h(H), we need that
∆}(H)−∆op

} (H)
} (mod }) = δ(H) = 0,

which is satisfied by ∆}(H) = H ⊗ 1 + 1⊗H.
We can find ∆}(X

+) by taking ∆}(X
+) = X+ ⊗ f + g ⊗ X+,

where f and g are functions of }.
∆} is coassociative and an algebra homomorphism, so we get

∆}(X
+) = X+⊗ e}H + 1⊗X+, ∆}(X

−) = X−⊗ 1+ e−}H ⊗X+.

We can rewrite these expressions by defining q = e}:

∆}(X
+) = X+⊗qH + 1⊗X+, ∆}(X

−) = X−⊗ 1+q−H ⊗X+.

We now have calculated the quantizations Uq(b±) of the Lie
bialgebras b±. Note that the monomials (X±)tHs form a
topological basis of b±.
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Example: Uq(sl2)

Let us introduce the pairing 〈, 〉 : (Uq(b+))∗ × Uq(b+)→ k [[}]].
Uq(b+)∗ is isomorphic to Uq(b−) (say with isomorphism
φ : Uq(b−)→ Uq(b+)∗) We use the notation
X+ = X , φ(X−) = x , and write A for H ∈ Uq(b+) and a for
φ(H) ∈ Uq(b+)∗. We assume a,x is the dual basis:

〈1, 1〉 = 1, 〈1,A〉 = 0, 〈1,X 〉 = 0, 〈a, 1〉 = 0, 〈x , 1〉 = 0, (11)

〈a,A〉 = }−1, 〈x ,X 〉 = }−1, 〈a,X 〉 = 0, 〈x ,A〉 = 0,

We extend the pairing following the definition of a Hopf algebra
pairing to obtain a dual basis:

〈as ′x t ′ ,AsX t〉 = 1

}t+s
δs,s ′δt,t ′s !q−1/2t(t−1)[t]q !,

where q = e}, and [n]q = qn−q−n
q−q−1 and [n]q ! = [n]q [n− 1]q · · · [1]q.

From the double of D(Uq(b+)) we can compute Uq(sl2) by aplying
a simple homomorphism, giving us the quasitriangular structure.
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The basis

Note that we are dividing by }, so formally we should introduce
new generators ā = }a.
After quantization, in general we have no elements corresponding
to non simple roots in the Lie algebra. How to construct basis?
If the rootsystem of g has no non-simple roots, we use the
isomorphism Uh(g)→ U(g)[[h]] together with the classical PBW
theorem.
In some cases Uh(g) contains the non simple root elements.
Otherwise, use the action of the braid group (the quantum
analogue of the weyl group). In our case this is not necessary!
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After quantization, in general we have no elements corresponding
to non simple roots in the Lie algebra. How to construct basis?
If the rootsystem of g has no non-simple roots, we use the
isomorphism Uh(g)→ U(g)[[h]] together with the classical PBW
theorem.
In some cases Uh(g) contains the non simple root elements.
Otherwise, use the action of the braid group (the quantum
analogue of the weyl group). In our case this is not necessary!

Sjabbo Schaveling Quantum Enveloping Algebras and Lie bi-algebras



The basis

Note that we are dividing by }, so formally we should introduce
new generators ā = }a.
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Uq(sl2)

After executing the quantum double construction on Uq(b+) we
end up with the following relations (after applying the
homomorphism which sends a back to H and x back to X−, so
dividing out a part of the Cartan subalgebra of the double:
[a,A] = 0.)

[X+,X−] =
ehH − e−hH

eh − e−h

,

[H,X−] = −X−, [H,X+] = X+

,
We get the following R matrix from the quantum double:

Rh = exp(
}
2
H ⊗H)

∞

∑
t=0

q1/2t(t+1) (1− q−2)t

[t]q !
(X+)t ⊗ (X−)t .

(12)
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Appendices

Part VI: Cohomologies.
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Lie bialgebra cohomology

Definition 22

(Chevalley-Eilenburg complex) Let M be a g module. Set
Cn((g),M) := Homk(

∧n (g),M), n > 0, and C0(g ,M) := M,
where

∧k g is the k-th exterior power of g. This is the
Chevalley-Eilenberg cochain complex.
We define the differential on c ∈ Cn(g,M) as

dc(x1, · · · , xn+1) =
n+1

∑
i=1

(−1)i+1xi .c(x1, · · · , x̂i , · · · , xn)+

∑
1≤i<j≤n+1

(−1)i+jc([xi , xj ], x1, · · · , x̂i , · · · , x̂j , · · · , xn+1),

(13)

where x1, · · · , xn+1 ∈ g, and x .d means the module action of g on
d ∈ M.
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generalised quantum double

In general we want to modify H∗ in the double construction. We
need a double cross product Hopf algebras.

Definition 23

Two Hopf algebras (A,H) form a matched pair if H is a right
A-module coalgebra (H / A) and A is a left H module coalgebra
(H.A) obeying:

(hg) / a = ∑(h / (g1 . a1))(g2 / a2), 1 / a = ε(a)

(14)

h . (ab) = ∑(h1 . a1)((h2 / a2) . b), h . 1 = ε(h)

(15)

∑ h1 / a1 ⊗ h2 . a2 = ∑ h2 / a2 ⊗ h1 . a1. (16)

In our case we will take the co-adjoint action Ad∗ of H on H∗ (or
H∗ on H) given by:

Ad∗h (φ) = ∑ φ2〈h, (Sφ1)φ3〉.
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generalised quantum double

Definition 24

A pair of matched Hopf algebras (A,H) forms a double cross
product Hopf algebra built on A⊗H together with product and
antipode

(a⊗ h)(b⊗ g) = ∑ a(h1 . b1)⊗ (h2 / b2)g ,

(17)

S(a⊗ h) = (1⊗ Sh)(Sa⊗ 1), (18)

and tensor product unit, counit and coproduct
∆(c ⊗ d) = c1 ⊗ d1 ⊗ c2 ⊗ d2.
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Lie bialgebra cohomology

Definition 25

(Lie algebra cohomology) Define the space of cocycles
Zp(g,M) := {c ∈ Cp(g,M)|dc = 0} and the space of
coboundaries
Bp(g,M) := {c ∈ Cp(g,M)|∃c ′ ∈ Cp−1(g,M)s.t. dc ′ = c}.
Then define the Lie algebra cohomology as
Hp(g,M) := Zp(g,M)/Bp(g,M).

Note that the condition δ([X ,Y ]) = X .δ(Y )− Y .δ(X ) states
that δ is a 1-cocycle in the Lie algebra cohomology H∗(g, g⊗ g),
with the adjoint action of g on the tensor product module g⊗ g.
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Hopf algebra cohomology

Definition 26

(see p. 173 Chari-Pressley) Let H be a Hopf algebra. For i , j ≥ 1,
define C i ,j := Homk(H

⊗i ,H⊗j ), and define d ′i ,j : C i ,j → C i+1,j and

d ′′i ,j : C i ,j → C i ,j+1 as follows (let γ ∈ C i ,j ):

(d ′γ)(a1 ⊗ · · · ⊗ ai+1) := ∆(j)(a1) · γ(a2 ⊗ · · · ⊗ ai+1)+

i

∑
r=1

(−1)rγ(a1 ⊗ · · · ⊗ ar−1ar+1 ⊗ ar+2 ⊗ · · · ⊗ ai+1)

+(−1)i+1γ(a1 ⊗ · · · ⊗ ai ).∆(j)(ai+1),
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Hopf algebra cohomology

Definition 27

(d ′′γ)(a1 ⊗ · · · ⊗ ai ) :=

(µ(i) ⊗ γ)(∆1,i+1(a1)∆2,i+2(a2) · · ·∆i ,2i (ai ))

+
j

∑
r=1

(−1)r (id⊗r−1 ⊗ ∆⊗ id⊗j−r )(γ(a1 ⊗ · · · ⊗ ai ))

+ (−1)j+1(γ⊗ µ(i))(∆1,i+1(a1)∆2,i+2(a2) · · ·∆i ,2i (ai )).
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Hopf algebra cohomology

in this definition, µ(i) and ∆(j) are defined as follows

µ(i)(a1 ⊗ · · · ⊗ ai ) = a1 · · · · ai (19)

∆(j)(a) = (id ⊗ · · · ⊗ id ⊗ ∆) · · · (id ⊗ ∆)(∆(a)). (20)

The ∆i ,j means sending the coproduct to the ith and the jth
coordinate. The next proposition follows by direct computation

Theorem 28

Let d’ and d” be as in the definitions, then,
d ′ ◦ d ′ = d ′′ ◦ d ′′ = d ′ ◦ d ′′ + d ′′ ◦ d ′ = 0.

Definition 29

Let H be a Hopf algebra, and let d’ and d” be as defined
previously, and set d = d ′ij + (−1)id ′′ij and Cn = ⊕i+j=n+1C

ij .

Then d : Cn → Cn+1 and (C,d) is a cochain complex with
cohomology groups H∗(H,H).
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Hopf algebra deformations

Let us write ah = a+ a1h+ a2h
2 + · · · for an element of Ah.

Because µh and ∆h are k [[h]]-module maps, they are determined
by their values on elements of Ah for which a1 = a2 = · · · = 0.
Write

µh(a⊗ a′) = µ(a⊗ a′) + µ1(a⊗ a′)h+ µ2(a⊗ a′)h2 + · · ·
(21)

∆h(a) = ∆(a) + ∆1(a)h+ ∆2(a)h
2 + · · · (22)

The (co-)associativity and algebra homomorphism conditions of
the Hopf algebra deformation are

µh(µh(a1 ⊗ a2)⊗ a3) = µh(a1 ⊗ µh(a2 ⊗ a3)) (23)

(∆h ⊗ id)∆h(a) = (id ⊗ ∆h)∆h(a)

∆h(µh(a1 ⊗ a2)) = (µh ⊗ µh)∆13
h (a1)∆24

h (a2).
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Hopf algebra deformations

Definition 30

A pair of k-module map (µ1, ∆1) is called a deformation (mod h2)
of a Hopf algebra H if it satisfies

µ1(a1a2 ⊗ a3) + µ1(a1 ⊗ a2)a3 = a1µ1(a2 ⊗ a3)

+ µ1(a1 ⊗ a2a3)

(∆⊗ id)∆1(a) + (∆1 ⊗ id)∆(a) =
(id ⊗ ∆)∆1(a) + (id ⊗ ∆1)∆(a)

∆(µ1(a1 ⊗ a2)) + ∆1(a1a2) = (µ⊗ µ1 + µ1 ⊗ µ)∆13(a1)∆24(a2)

+ ∆1(a1)∆(a2) + ∆(a1)∆1(a2).

Or more generally a deformation (mod hn+1) is a 2n-tuple
(µ1, · · · , µn, ∆1, · · · , ∆n) which satisfies the (co-)associativity and
algebra homomorphism conditions (mod hn+1)
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Hopf algebra deformation

Theorem 31

The following relations between Hopf algebra cohomology and
Hopf algebra relations hold:

1 there is a natural bijection between H2(H,H) and the set of
equivalence classes of deformation (mod h2) of H,

2 If H2(H,H) = 0, every deformation of H is trivial and

3 If H3(H,H) = 0, every deformation (mod h2) of H extends to
a genuine deformation of H.

In our case, H3(H,H), will not be trivial unfortunately.
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Poisson-Lie groups

Part IIV: Relation to Poisson groups.
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Relation to Poisson groups

Definition 32

(Lie Group) A Lie group G is a smooth manifold G without
boundary that is a group with a smooth multiplication map
µ : G × G → G and a smooth inversion map i : G → G .

Definition 33

(Poisson Structure) Let M be a smooth manifold of finite
dimension m, and denote with C(M) the algebra of smooth real
valued functions on M. A Poisson structure on M is an R bilinear
map {, } : C (M)× C (M)→ C (M) (the Poisson bracket)
satisfying ∀f1, f2, f3 ∈ C (M):

1 {f1, f2} = −{f2, f1}
2 {f1, {f2, f3}}+ {f3, {f1, f2}}+ {f2, {f3, f1}} = 0

3 {f1f2, f3} = {f1, f3}f2 + f1{f2, f3}
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Relation to Poisson groups

Definition 34

(Poisson Maps) A smooth map F : M → N between Poisson
manifolds is a Poisson map if it preserves the Poisson brackets of
M and N: {f1, f2}M ◦ F = {f1 ◦ F , f2 ◦ F}N .
(Product Poisson structure) The Product Poisson structure is
given by {f1(x , y), f2}M×N(x , y) =
{f1(., y), f2(., y)}M(x) + {f1(x , .), f2(x , .)}N(y), where
f1, f2 ∈ C (M ×N).

Definition 35

A Poisson-Lie group G is a Lie group which also has a Poisson
structure that is compatible with the Lie structure, i.e. the
multiplication map µ : G × G → G is a poisson map. A
homomorphism of Poisson Lie groups is a homomorphism of Lie
groups that is also a Poisson map.
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Relation to Poisson groups

Theorem 36

Define on a Poisson Lie group G Ad(x)(y) = xyx−1 for all
x , y ∈ G . Then the tangent space at the unit element e of G is a
Liealgebra g with Lie bracket [X ,Y ] = TeAd(X )(Y ).Define the
cobracket δ by the relation
〈X , d{f1, f2}e〉 = 〈δ(X ), (df1)1 ⊗ (df2)e〉. Then (TeG , [, ], δ) is a
Lie bialgebra.

Proof: Check the definitions. (See ”A Guide to Quantum Groups”
by Chari, V. and Pressley, A., page 25.)
Note: if the Lie algebra arising in this case is quasitriangular, i.e. if
δ is a coboundary, then one can use the classical r-matrix to define
the Poisson bracket, and one can define a classical R-matrix
R ∈ G × G which is a solution of the Quantum Yang Baxter
equation: R12R13R23 = R23R13R12
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by Chari, V. and Pressley, A., page 25.)
Note: if the Lie algebra arising in this case is quasitriangular, i.e. if
δ is a coboundary, then one can use the classical r-matrix to define
the Poisson bracket, and one can define a classical R-matrix
R ∈ G × G which is a solution of the Quantum Yang Baxter
equation: R12R13R23 = R23R13R12
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Relation to Poisson groups

Theorem 36

Define on a Poisson Lie group G Ad(x)(y) = xyx−1 for all
x , y ∈ G . Then the tangent space at the unit element e of G is a
Liealgebra g with Lie bracket [X ,Y ] = TeAd(X )(Y ).Define the
cobracket δ by the relation
〈X , d{f1, f2}e〉 = 〈δ(X ), (df1)1 ⊗ (df2)e〉. Then (TeG , [, ], δ) is a
Lie bialgebra.

Proof: Check the definitions. (See ”A Guide to Quantum Groups”
by Chari, V. and Pressley, A., page 25.)
Note: if the Lie algebra arising in this case is quasitriangular, i.e. if
δ is a coboundary, then one can use the classical r-matrix to define
the Poisson bracket, and one can define a classical R-matrix
R ∈ G × G which is a solution of the Quantum Yang Baxter
equation: R12R13R23 = R23R13R12

Sjabbo Schaveling Quantum Enveloping Algebras and Lie bi-algebras



Relation to Poisson groups

Theorem 36

Define on a Poisson Lie group G Ad(x)(y) = xyx−1 for all
x , y ∈ G . Then the tangent space at the unit element e of G is a
Liealgebra g with Lie bracket [X ,Y ] = TeAd(X )(Y ).Define the
cobracket δ by the relation
〈X , d{f1, f2}e〉 = 〈δ(X ), (df1)1 ⊗ (df2)e〉. Then (TeG , [, ], δ) is a
Lie bialgebra.

Proof: Check the definitions. (See ”A Guide to Quantum Groups”
by Chari, V. and Pressley, A., page 25.)
Note: if the Lie algebra arising in this case is quasitriangular, i.e. if
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Relation to Poisson groups

Definition 37

(Poisson algebra) A Poisson algebra over k is a commutative
algebra A over k with a skew-symmetric k-module map
{, } : A⊗ A→ A (Poisson bracket) such that ∀a, b, c ∈ A:

1 {a, {b, c}}+ {c , {a, b}}+ {b, {c , a}} = 0,

2 {ab, c} = {a, c}b+ a{b, c}.
A Poisson Hopf algebra is a Poisson algebra which is also a Hopf
algebra, such that the Poisson structure and the Hopf structure are
compatible in the following way:

∀a, b ∈ A, {∆(a), ∆(b)}A⊗A = ∆({a, b}A),

where
{a1 ⊗ b1, a2 ⊗ b2}A⊗A = {a1, a2}A ⊗ b1b2 + a1a2 ⊗ {b1, b2}A.

The Poisson structure of a Poisson-Lie group is a Poisson algebra.
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Lie algebra cohomology from Lie group de rahm complex

Theorem 38

The Chevalley-Eilenberg differential on g, where g is the Lie
algebra belonging to the Lie group G, is equal to the De Rham
differential Ω∗(G ) restricted to the space of left invariant
differential forms. (See wikipedia: Lie algebra cohomology)

Note that the object dual to U(g), the regular functions F(G) on a
Poisson-Lie group G,which is a Poisson algebra, is only the
completion of a Poisson-Hopf algebra, due to
F (G × G ) 6= F (G )⊗ F (G ). This can be solved by looking at the
subalgebra of finite dimensional representations Rep(G) of F(G),
which is dense in F(G).
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Relation between Univeral enveloping algebra and Poisson
algebra on a Poisson Lie group

adsdas
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Geometrical Quantization of Poisson algebras

adsdas
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