

The Taylor Remainder Formulas. Let f be a smooth function, let $P_{n,a}(x)$ be the *n*th order Taylor polynomial of f around a and evaluated at x, so with $a_k = f^{(k)}(a)/k!$,

$$P_{n,a}(x) \coloneqq \sum_{k=0}^n a_k (x-a)^k,$$

and let $R_{n,a}(x) := f(x) - P_{n,a}(x)$ be the "mistake" or "remainder term". Then

$$R_{n,a}(x) = \int_{a}^{x} dt \, \frac{f^{(n+1)}(t)}{n!} (x-t)^{n},\tag{1}$$

or alternatively, for some t between a and x,

$$R_{n,a}(x) = \frac{f^{(n+1)}(t)}{(n+1)!} (x-a)^{n+1}.$$
 (2)

(In particular, the Taylor expansions of sin, cos, exp, and of several other lovely functions converges to these functions everywhe*re*, no matter the odds.)

Proof of (1) (for adults; I leara ned it from my son Itai). The R' fundamental theorem of calcu- a $\dot{x_1}$ lus says that if g(a) = 0 then $R^{\prime\prime}$ $g(x) = \int_{a}^{x} dx_{1}g(x_{1})$. By design, a $\dot{x_2}$ $\dot{x_1}$ = . . . = $R_{n,a}^{(k)}(a) = 0$ for $0 \le k \le n$. The- $R^{(n+1)}$ refore x_1 x2 $(x-t)^n/n!$

$$= \int_{a}^{x} dx_{1} \int_{a}^{x_{1}} dx_{2} R_{n,a}''(x_{2})$$

$$= \dots = \int_{a}^{x} dx_{1} \int_{a}^{x_{1}} dx_{2} \dots \int_{a}^{x_{n}} dx_{n} \int_{a}^{t} dt R_{n,a}^{(n+1)}(t)$$

$$= \int_{a}^{x} dx_{1} \int_{a}^{x_{1}} dx_{2} \dots \int_{a}^{x_{n}} dx_{n} \int_{a}^{t} dt f^{(n+1)}(t),$$
where $x > a$ and with similar logic when $x < a$

when x > a, and with similar logic when x < a,

$$= \int_{a \le t \le x_n \le \dots \le x_1 \le x} f^{(n+1)}(t) = \int_a^t dt \, f^{(n+1)}(t) \int_{\substack{t \le x_n \le \dots \le x_1 \le x \\ t \le x_n \le \dots \le x_1 \le x}} 1$$
$$= \int_a^t dt \frac{f^{(n+1)}(t)}{n!} \int_{(x_1,\dots,x_n) \in [t,x]^n} 1 = \int_a^x dt \, \frac{f^{(n+1)}(t)}{n!} (x-t)^n.$$

de-Fubini (obfuscation in the name of simplicity). Prematurely aborting the above chain of equalities, we find that for any $1 \le k \le n+1$,

$$R(x) = \int_{a}^{x} dt \, R^{(k)}(t) \frac{(x-t)^{k-1}}{(k-1)!}.$$

But these are easy to prove by induction using inte-Guido Fubini gration by parts, and there's no need to invoke Fubini.

Partial Derivatives Commute. Make Fubini Smile Again!
f
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 is C^2 near $a \in \mathbb{R}^2$, then $f_{12}(a) = f_{21}(a)$.
Proof. Let $x \in \mathbb{R}^2$ be small, and let $R := [a_1, a_1 + x_1] \times [a_2, a_2 + x_2]$.
 $f_{12}(a) \sim \boxed{\int f_{12}} = \underbrace{\sum f}_{+\bullet} f_{-} = \boxed{\int f_{21}} \sim f_{21}(a)$
 $f_{12}(a) \sim \frac{1}{|R|} \int_R f_{12} = \frac{1}{|R|} \int_{a_1}^{a_1 + x_1} dt_1 (f_1(t_1, a_2 + x_2) - f_1(t_1, a_2))$
 $= \frac{1}{|R|} \begin{pmatrix} f(a_1 + x_1, a_2 + x_2) - f(a_1 + x_1, a_2) \\ -f(a_1, a_2 + x_2) + f(a_1, a_2) \end{pmatrix}$.

But the answer here is the same as in

$$f_{21}(a) \sim \frac{1}{|R|} \int_{R} f_{21} = \frac{1}{|R|} \int_{a_2}^{a_2+x_2} dt_2 \left(f_2(a_1+x_1,t_2) - f_2(a_1,t_2) \right)$$
$$= \frac{1}{|R|} \left(\begin{array}{c} f(a_1+x_1,a_2+x_2) - f(a_1,a_2+x_2) \\ -f(a_1+x_1,a_2) + f(a_1,a_2) \end{array} \right),$$

and both of these approximations get better and better as $x \to 0$.

The Mean Value Theorem for Curves (MVT4C). $\gamma(b)$ If $\gamma: [a, b] \to \mathbb{R}^2$ is a smooth curve, then there is some $t_1 \in (a, b)$ for which $\gamma(b) - \gamma(a)$ and $\dot{\gamma}(t_1)$ are linearly dependent. If also $\gamma(a) = 0$, and • $\gamma = \begin{pmatrix} \xi \\ \eta \end{pmatrix}$ and $\eta \neq 0 \neq \dot{\eta}$ on (a, b), then $\frac{\xi(b)}{\eta(b)} = \frac{\dot{\xi}(t_1)}{\dot{\eta}(t_1)} \quad \left(\text{when lucky, } = \frac{\ddot{\xi}(t_2)}{\ddot{\eta}(t_2)} \dots \right).$ $\gamma(a)$ **Proof of (2).** Iterate the lucky MVT4C as follows: $R_{n,a}^{(n+1)}(t_{n+1})$ $R'_{n,a}(t_1)$ $f^{(n+1)}(t)$ $R_{n,a}(x)$

$$\frac{n(a+1)}{(x-a)^{n+1}} = \frac{n(a+1)}{(n+1)(t_1-a)^n} = \dots = \frac{n(a+1)}{(n+1)!} = \frac{1}{(n+1)!}$$

J.H. Lambert π is Irrational following Ivan Niven, Bull. Amer. Math. Soc. (1947) pp. 509:

Theorem: TT is irrational.
Proof: Assume
$$TT = 4/6$$
 and consider the polynomial
 $P(X) = \frac{Xn(a-4x)^n}{n!}$ For h quite large. Clearly
 $P(X)$ is posi control-22 tive yet
small, hence be used the End User License Agreement $I = \int_{0}^{T} P(x) \sin x dx$
Satisfres OX
other hand, Lesen Be det Endberuterizen works die repeated Artige
ration by parts shows that
 $I = (\frac{1}{4x} \cos x) \pm \int_{0}^{1} P(2n+1)(x) \cos x dx$. The second
tirm is O because P is a polynomial of digne
DN, and the First term is an integer for charly
 $P(X)(0)$ is always an integer, for $P(T-X) = P(x)$
hence same is true for $P(K)(TT)$ and for sink
 $Cos of O \& TT$ are all integers. Ergo
 I is an integer
between o and l,
and these are rare
indued.

