comment "Alexander is the quantum $\hat{\mathcal{U}}(\mathrm{g})$ or $\hat{\mathcal{U}}_{q}(\mathrm{~g})$) and suitable elements R, C,
$g l(1 \mid 1)$ invariant". I have an opinion about this, and I'd like to share it. First, some stories.
I left the wonderful subject of Categorification nearly 15 years ago. It got crowded, lots of very smart people had things to say, and I feared I will have nothing to add. Also, clearly the next step was to categorify all other "quantum invariants". Except it was not clear what "categorify" means. Worse, I felt that I (perhaps "we all") didn't understand "quantum invariants" well enough to try to categorify them, whatever that might mean.
I still feel that way! I learned a lot since 2006, yet I'm still not comfortable with quantum algebra, quantum groups, and quantum invariants. I still don't feel that I know what God had in mind when She created this topic.
Yet I'm not here to rant about my philosophical quandaries, but only about things that I learned about the Alexander polynomial after 2006.
Yes, the Alexander polynomial fits Theorem 2. $Z(K)=\mathbb{O}_{p x}\left(\omega^{-1} \mathbb{P}^{q^{i j} p_{i} x_{j}}\right)$ where within the Dogma, "one invariant for every Lie algebra and representation" (it's $g l(1 \mid 1)$, I hear). But it's better to think of it as a quantum invariant arising by other means, outside the Dogma.
Alexander comes from (or in) practically any non-Abelian Lie algebra. Foremost from the not-even-semisimple 2D" $a x+b$ " algebra. You get a polynomially-sized extension to tangles using some lovely formulas (can you categorify them?). It generalizes to higher dimensions and it has an organized family of siblings. (There are some questions too, beyond categorification).
I note the spectacular existing categorification of Alexander by Ozsváth and Szabó. The theorems are proven and a lot they say, the programs run and fast they run. Yet if that's where the story ends, She has abandoned us. Or at least abandoned me: a simpleton will never be able to catch up.
If you care only about categorification, the take-home from my talk will be a challenge: Categorify what I believe is the best Alexander invariant for tangles.
the Heisenberg algebra, with $C_{i}=\mathbb{C}^{t / 2}$ and

The "First Tangle". $\quad Z(K)=$
$\mathbb{E}_{12}\left[\frac{2 T-1}{T}, \frac{(T-1)\left(p_{1}-p_{2}\right)\left(T x_{1}-x_{2}\right)}{2 T-1}\right]$

$=$| $2-T^{-1}$ | x_{1} | x_{2} |
| :---: | :---: | :---: |
| p_{1} | $\frac{T(T-1)}{2 T-1}$ | $\frac{1-T}{2 T-1}$ |
| p_{2} | $\frac{T(1-T)}{2 T-1}$ | $\frac{T-1}{2 T-1}$ |

There's also strand doubling and reversal...

On a chat window here I saw a The Yang-Baxter Technique. Given an algebra U (typically some
$R=\sum a_{i} \otimes b_{i} \in U \otimes U \quad$ with $\quad R^{-1}=\sum \bar{a}_{i} \otimes \bar{b}_{i} \quad$ and $\quad C, C^{-1} \in U$, form $\quad Z(K)=\sum_{i, j, k} a_{i} C^{-1} \bar{b}_{k} \bar{a}_{j} b_{i} \otimes \bar{b}_{j} \bar{a}_{k}$.
Problem. Extract information from Z.
The Dogma. Use representation theory. In principle finite, but slow.

Example 1. Let $\mathfrak{a}:=L\langle a, x\rangle /([a, x]=x), \mathfrak{b}:=\mathfrak{a}^{\star}=\langle b, y\rangle$, and \quad Gentle's Agreement. $\mathfrak{g}:=\mathfrak{b} \rtimes \mathfrak{a}=\mathfrak{b} \oplus \mathfrak{a}$ with $[a, x]=x,[a, y]=-y,[b, \cdot]=0$, and Everything converges! $[x, y]=b$ and with $\operatorname{deg}(y, b, a, x)=(1,1,0,0)$. Let $U=\hat{\mathcal{U}}(\mathrm{g})$ and
$R:=\mathbb{e}^{b \otimes a+y \otimes x} \in U \otimes U \quad$ or better $\quad R_{i j}:=\mathbb{e}^{b_{i} a_{j}+y_{i} x_{j}} \in U_{i} \otimes U_{j}, \quad$ and $\quad C_{i}=\mathbb{e}^{-b_{i} / 2}$.
Theorem 1. With "scalars":=power series in $\left\{b_{i}\right\}$ which are rational functions in $\left\{b_{i}\right\}$ and $\left\{B_{i}:=\mathbb{e}^{b_{i}}\right\}$,

a tangle w/o closed components

With Roland van der Veen
a docile perturbation for other
Lie algebras; semisimple algebras have a hidden parameter ϵ !

Example 2. Let $\mathfrak{\mathfrak { h }}:=A\langle p, x\rangle /([p, x]=1)$ be Theorem 3. Full evaluation via

" Γ-calculus" relates via $A \leftrightarrow I-A^{T}$ and has
" Γ-calculus" relates via $A \leftrightarrow I-A^{T}$ and ha
slightly simpler formulas: $\omega \rightarrow(1-\beta) \omega$,

$$
\left(\begin{array}{lll}
\alpha & \beta & \theta \\
\gamma & \delta & \epsilon \\
\phi & \psi & \Xi
\end{array}\right) \rightarrow\left(\begin{array}{ll}
\gamma+\frac{\alpha \delta}{1-\beta} & \epsilon+\frac{\delta \theta}{1-\beta} \\
\phi+\frac{\alpha \psi}{1-\beta} & \Xi+\frac{\psi \theta}{1-\beta}
\end{array}\right)
$$

Why Should You Categorify This? The simplest and fastest Alexander for tangles, easily generalizes to the multi-variable case, generalizes to v-tangles and wtangles, generalizes to other Lie algebras. In fact, it's in almost any Lie algebra, and you don't even need to know what is $g l(1 \mid 1)$! But you'll have to deal with denominators and/or divisions!
Note. Example $1 \leftrightarrow$ Example 2 via $g \hookrightarrow \mathfrak{h}(t)$

$\left(\begin{array}{lll}\alpha & \beta & \theta \\ \gamma & \delta & \epsilon \\ \phi & \psi & \Xi\end{array}\right) \rightarrow\left(\begin{array}{lll}\gamma+\frac{\alpha \delta}{1-\beta} & \epsilon+\frac{\delta \theta}{1-\beta} \\ \phi+\frac{\alpha \psi}{1-\beta} & \Xi+\frac{\psi \theta}{1-\beta}\end{array}\right)$
Why Should You Categorify This? The simplest and fastest Alexander for tangles, easily generalizes to the multi-variable case, generalizes to v-tangles and wtangles, generalizes to other Lie algebras. In fact, it's in almost any Lie algebra, and you don't even need to know what is $g l(1 \mid 1)$! But you'll have to deal with denominators and/or divisions!
Note. Example $1 \leadsto$ Example 2 via $\mathfrak{g} \hookrightarrow \mathfrak{h}(t)$ via $(y, b, a, x) \mapsto(-t p, t, p x, x)$.

The PBW Principle Lots of algebras are isomorphic as vector spaces to polynomial algebras. So we want to understand arbitrary linear maps between polynomial algebras.
Convention. For a finite set A, let $z_{A}:=\left\{z_{i}\right\}_{i \in A}$ and let $\zeta_{A}:=\left\{z_{i}^{*}=\zeta_{i}\right\}_{i \in A} . \quad(p, x)^{*}=(\pi, \xi)$
The Generating Series $\mathcal{G}: \operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right) \rightarrow \mathbb{Q} \llbracket \zeta_{A}, z_{B} \rrbracket$.
Claim. $L \in \operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right) \underset{\mathcal{G}}{\sim} \mathbb{Q}\left[z_{B}\right] \llbracket \zeta_{A} \rrbracket \ni \mathcal{L}$ via

$$
\begin{gathered}
\mathcal{G}(L):=\sum_{n \in \mathbb{N}^{A}} \frac{\zeta_{A}^{n}}{n!} L\left(z_{A}^{n}\right)=L\left(\mathbb{e}^{\sum_{a \in A} \zeta_{a z a}}\right)=\mathcal{L}=\text { greek }^{\mathcal{L}_{\text {latin }}}, \\
\mathcal{G}^{-1}(\mathcal{L})(p)=\left(\left.p\right|_{z_{a} \rightarrow \partial_{\zeta a}} \mathcal{L}\right)_{\zeta_{a}=0} \quad \text { for } p \in \mathbb{Q}\left[z_{A}\right] .
\end{gathered}
$$

Claim. If $L \in \operatorname{Hom}\left(\mathbb{Q}\left[z_{A}\right] \rightarrow \mathbb{Q}\left[z_{B}\right]\right), M \in \operatorname{Hom}\left(\mathbb{Q}\left[z_{B}\right] \rightarrow\right.$ $\left.\mathbb{Q}\left[z_{C}\right]\right)$, then $\mathcal{G}(L / / M)=\left(\left.\mathcal{G}(L)\right|_{z_{b} \rightarrow \partial_{\xi_{b}}} \mathcal{G}(M)\right)_{\zeta_{b}=0}$.
Examples. $\bullet \mathcal{G}(i d: \mathbb{Q}[p, x] \rightarrow \mathbb{Q}[p, x])=\mathbb{e}^{\pi p+\xi x}$.

- Consider $R_{i j} \in\left(\mathfrak{b}_{i} \otimes \mathfrak{h}_{j}\right) \llbracket t \rrbracket \cong \operatorname{Hom}\left(\mathbb{Q}[] \rightarrow \mathbb{Q}\left[p_{i}, x_{i}, p_{j}, x_{j}\right]\right) \llbracket t \rrbracket$. Then $\mathcal{G}\left(R_{i j}\right)=\mathbb{e}^{\left(\mathbb{e}^{t}-1\right)\left(p_{i}-p_{j}\right) x_{j}}=\mathbb{e}^{(T-1)\left(p_{i}-p_{j}\right) x_{j}}$.
Heisenberg Algebras. Let $\mathfrak{h}=A\langle p, x\rangle /([p, x]=1)$, let $\mathbb{O}_{i}: \mathbb{Q}\left[p_{i}, x_{i}\right] \rightarrow \mathfrak{y}_{i}$ is the " p before x " PBW normal ordering map and let $h m_{k}^{i j}$ be the composition

$$
\mathbb{Q}\left[p_{i}, x_{i}, p_{j}, x_{j}\right] \xrightarrow{\mathbb{O}_{i} \otimes \mathrm{O}_{j}} \mathfrak{h}_{i} \otimes \mathfrak{h}_{j} \xrightarrow{m_{k}^{i j}} \mathfrak{h}_{k} \xrightarrow{\mathbb{O}_{k}^{-1}} \mathbb{Q}\left[p_{k}, x_{k}\right] .
$$

Then $\mathcal{G}\left(h m_{k}^{i j}\right)=\mathbb{e}^{-\xi_{i} \pi_{j}+\left(\pi_{i}+\pi_{j}\right) p_{k}+\left(\xi_{i}+\xi_{j}\right) x_{k}}$.
Proof. Recall the "Weyl CCR" $\mathbb{e}^{\xi x} \mathbb{e}^{\pi p}=\mathbb{e}^{-\xi \pi} \mathbb{e}^{\pi p} \mathbb{e}^{\xi x}$, and find

$$
\begin{aligned}
& \mathcal{G}\left(h m_{k}^{i j}\right)=\mathbb{e}^{\pi_{i} p_{i}+\xi_{i} x_{i}+\pi_{j} p_{j}+\xi_{j} x_{j}} / / \mathbb{O}_{i} \otimes \mathbb{O}_{j} / / m_{k}^{i j} / / \mathbb{O}_{k}^{-1} \\
& \quad=\mathbb{e}^{\pi_{i} p_{i} \mathbb{e}^{\xi_{i} x_{i} x_{i}} \mathbb{e}_{j} p_{j} p_{\mathbb{e}} \xi_{j} x_{j}} / / m_{k}^{i j} / / \mathbb{O}_{k}^{-1}=\mathbb{e}^{\pi_{i} p_{k}} \mathbb{E}^{\xi_{i} x_{k}} \mathbb{e}_{j}^{\pi_{j} p_{k} \mathbb{e}_{j} x_{k}} / / \mathbb{O}_{k}^{-1} \\
& \quad=\mathbb{e}^{-\xi_{i} \pi_{j}} \mathbb{e}^{\left(\pi_{i}+\pi_{j}\right) p_{k}} \mathbb{e}^{\left(\xi_{i}+\xi_{j}\right) x_{k}} / / / \mathbb{O}_{k}^{-1}=\mathbb{e}^{-\xi_{i} \pi_{j}+\left(\pi_{i}+\pi_{j}\right) p_{k}+\left(\xi_{i}+\xi_{j}\right) x_{k}} .
\end{aligned}
$$

GDO := The category with objects finite sets and

$$
\operatorname{mor}(A \rightarrow B)=\left\{\mathcal{L}=\omega \mathbb{e}^{Q}\right\} \subset \mathbb{Q} \llbracket \zeta_{A}, z_{B} \rrbracket,
$$

where: • ω is a scalar. • Q is a "small" quadratic in $\zeta_{A} \cup z_{B}$. - Compositions: $\mathcal{L} / / \mathcal{M}:=\left(\left.\mathcal{L}\right|_{z_{i} \rightarrow \partial_{\zeta_{i}}} \mathcal{M}\right)_{\zeta_{i}=0}$.

Compositions. In $\operatorname{mor}(A \rightarrow B)$,

$$
Q=\sum_{i \in A, j \in B} E_{i j} \zeta_{i} z_{j}+\frac{1}{2} \sum_{i, j \in A} F_{i j} \zeta_{i} \zeta_{j}+\frac{1}{2} \sum_{i, j \in B} G_{i j} z_{i} z_{j}
$$

and so (remember, $e^{x}=1+x+x x / 2+x x x / 6+\ldots$)

where $\bullet E=E_{1}\left(I-F_{2} G_{1}\right)^{-1} E_{2} \bullet F=F_{1}+E_{1} F_{2}\left(I-G_{1} F_{2}\right)^{-1} E_{1}^{T}$ $\bullet G=G_{2}+E_{2}^{T} G_{1}\left(I-F_{2} G_{1}\right)^{-1} E_{2} \bullet \omega=\omega_{1} \omega_{2} \operatorname{det}\left(I-F_{2} G_{1}\right)^{-1 / 2}$
Proof of Claim in Example 2. Let $\Phi_{1}:=\mathbb{e}^{t\left(p_{i}-p_{j}\right) x_{j}}$ and $\Phi_{2}:=\mathbb{O}_{p_{j} x_{j}}\left(\mathbb{e}^{\left(\mathbb{e}^{t}-1\right)\left(p_{i}-p_{j}\right) x_{j}}\right)=: \mathbb{O}(\Psi)$. We show that $\Phi_{1}=\Phi_{2}$ in $\left(\mathfrak{h}_{i} \otimes \mathfrak{h}_{j}\right) \llbracket t \rrbracket$ by showing that both solve the $\mathrm{ODE} \partial_{t} \Phi=\left(p_{i}-p_{j}\right) x_{j} \Phi$ with $\left.\Phi\right|_{t=0}=1$. For Φ_{1} this is trivial. $\left.\Phi_{2}\right|_{t=0}=1$ is trivial, and

$$
\begin{gathered}
\partial_{t} \Phi_{2}=\mathbb{O}\left(\partial_{t} \Psi\right)=\mathbb{O}\left(\mathbb{e}^{t}\left(p_{i}-p_{j}\right) x_{j} \Psi\right) \\
\left(p_{i}-p_{j}\right) x_{j} \Phi_{2}=\left(p_{i}-p_{j}\right) x_{j} \mathbb{O}(\Psi)=\left(p_{i}-p_{j}\right) \mathbb{O}\left(x_{j} \Psi-\partial_{p_{j}} \Psi\right) \\
=\mathbb{O}\left(\left(p_{i}-p_{j}\right)\left(x_{j} \Psi+\left(\mathbb{e}^{t}-1\right) x_{j} \Psi\right)\right)=\mathbb{O}\left(\mathbb{e}^{t}\left(p_{i}-p_{j}\right) x_{j} \Psi\right)
\end{gathered}
$$

Implementation. Without, don't trust!

CF $=$ ExpandNumerator@*ExpandDenominatore*PowerExpande*Factor;

$\left(\mathbb{E}_{A I_{-} \rightarrow B 1_{-}}\left[\omega 1_{-}, Q 1_{-}\right] / / \mathbb{E}_{A 2_{-} \rightarrow 82_{-}}\left[\omega 2_{2}, Q 2_{-}\right]\right) / ;\left(B 1^{*}==A 2\right):=$
Module [$\{i, j, E 1, F 1, G 1, E 2, F 2, G 2, I, M=T a b l e\}$,

I = IdentityMatrix@Lengthe 81 ;

$E 1=M\left[\partial_{i, j} Q 1,\{i, A 1\},\{j, B 1\}\right] ; E 2=M\left[\partial_{i, j} Q 2,\{i, A 2\},\{j, B 2\}\right] ;$ $F 1=M\left[\partial_{i, j} Q 1,\{i, A 1\},\{j, A 1\}\right] ; F 2=M\left[\partial_{i, j} Q 2,\{i, A 2\},\{j, A 2\}\right] ;$ $G 1=M\left[\partial_{i, j} Q 1,\{i, B 1\},\{j, B 1\}\right] ; G 2=M\left[\partial_{i, j} Q 2,\{i, B 2\},\{j, B 2\}\right] ;$
$\mathbb{E}_{A 1 \rightarrow B 2}\left[C F\left[\omega 1 \omega 2 \operatorname{Det}[I-F 2 . G 1]^{1 / 2}\right]\right.$, CF@Plus [

$$
\begin{aligned}
& \operatorname{If}[A 1===\{ \} \vee B 2==\{ \}, \theta, A 1 \cdot E 1 \cdot \text { Inverse }[I-F 2 \cdot G 1] \cdot E 2 \cdot B 2], \\
& \operatorname{If}\left[A 1==\{ \}, \theta, \frac{1}{2} A 1 \cdot\left(F 1+E 1 \cdot F 2 \cdot \text { Inverse }[I-G 1 \cdot F 2] \cdot E 1{ }^{\prime}\right) \cdot A 1\right], \\
& \left.\left.\left.\operatorname{If}\left[B 2==\{ \}, \theta, \frac{1}{2} B 2 \cdot\left(G 2+E 2^{\prime} \cdot G 1 \cdot \text { Inverse }[I-F 2 \cdot G 1] \cdot E 2\right) \cdot B 2\right]\right]\right]\right]
\end{aligned}
$$

$A_{-} \backslash B_{-}:=$Complement $[A, B]$;
$\left(\mathbb{E}_{\left.A I_{-} \rightarrow B 1_{-}\left[\omega 1_{-}, Q 1_{-}\right] / / \mathbb{E}_{A 2_{-} \rightarrow B 2_{-}}\left[\omega 2_{-}, Q 2_{-}\right]\right) / ;\left(B 1^{*}=!=A 2\right):=}^{=}\right.$
$\left.\mathbb{E}_{A X U\left(A 2 \backslash 11^{*}\right) \rightarrow B 1 U 22^{*}}\left[\omega 1, Q 1+\operatorname{Sum}\left[\zeta^{*}\right\},\left\{\zeta, A 2 \backslash B 1^{*}\right\}\right]\right] / /$
$\mathbb{E}_{B 1^{*}+U 22-B 2 \cup(B 2 \backslash)\left(2^{*}\right)}\left[\omega 2, Q 2+\operatorname{Sum}\left[Z^{*} Z,\left\{Z, B 1 \backslash A 2^{*}\right\}\right]\right]$
$\left\{p^{*}, x^{*}, \pi^{*}, \xi^{*}\right\}=\{\pi, \xi, p, x\} ;\left(u_{-i}\right)^{*}:=\left(u^{*}\right)_{i} ;$
L_List**: \#\# \& /@ $\stackrel{\text {; }}{ }$
$\mathbb{R}_{i_{-}, j}:=\mathbb{E}_{\left\{1 \rightarrow-\left\{p_{i}, x_{i}, p_{j}, x_{j}\right\}\right.}\left[T^{-1 / 2},(1-T) p_{j} x_{j}+(T-1) p_{i} x_{j}\right] ;$
$\overline{\mathbf{R}}_{i, j}:=\mathbb{E}_{(\})\{ }\left\{p_{i}, x_{i}, p_{j}, x_{j}\right\}\left[T^{1 / 2},\left(1-T^{-1}\right) p_{j} x_{j}+\left(T^{-1}-1\right) p_{i} x_{j}\right] ;$
$\mathrm{C}_{i_{-}}:=\mathbb{E}_{(\} \rightarrow\left(p_{i}, x_{i}\right)}\left[\mathrm{T}^{-1 / 2}, 0\right] ;$
${\overline{c_{i}}}_{i_{-}}:=\mathbb{E}_{(\})\left(p_{i}, x_{i}\right)}\left[T^{1 / 2}, \theta\right] ;$
$h m_{i, s j \rightarrow k_{-}}:=\mathbb{E}_{\left\{\pi_{i}, \xi_{i}, \pi_{j}, \xi_{j}\right\} \rightarrow\left(p_{k}, x_{k}\right\}}\left[1,-\xi_{i} \pi_{j}+\left(\pi_{i}+\pi_{j}\right) p_{k}+\left(\xi_{i}+\xi_{j}\right) x_{k}\right]$
$\mathbb{E}_{\{ \} \rightarrow v s_{-}}\left[\omega i_{-}, Q_{-}\right]_{n}:=\operatorname{Module}[\{p s, x s, M\}$,
$\mathrm{ps}=\operatorname{Cases}\left[\mathrm{vs}, \mathrm{p}_{-}\right] ; \mathrm{xs}=\operatorname{Cases}\left[v s, \mathrm{x}_{-}\right] ;$
$M=$ Table [$\omega i, 1+$ Lengtheps, $1+$ Lengthexs] ;

M【 $2 ; ; 1 \mathbb{1}=p s ; M \mathbb{1}, 2 ; ; \mathbb{I}=x s ;$
MatrixForm[M_{n}]

Proof of Reidemeister 3.

$\left(R_{1,2} R_{4,3} R_{5,6} / / h m_{1,4-1} h_{2,5-2} h_{3,6 \rightarrow 3}\right)==$
($R_{2,3} R_{1,6} R_{4,5} / / h_{1,4-1} h_{2,5+2} h_{3,6+3}$)

True

The "First Tangle".

Factor /@

$\left(z=R_{1,6} \overline{\mathrm{C}}_{3} \overline{\mathrm{R}}_{7,4} \overline{\mathrm{R}}_{5,2} / / \mathrm{hm}_{1,3+1} / / \mathrm{hm}_{1,4+1} / / \mathrm{hm}_{1,5+1} / / \mathrm{hm}_{1,6-1} / / \mathrm{hm}_{2,7+2}\right)$
$\mathbb{E}_{(\})\left(p_{1}, p_{2}, x_{1}, x_{2}\right\}}\left[\frac{-1+2 T}{T}, \frac{(-1+T)\left(p_{1}-p_{2}\right)\left(T x_{1}-x_{2}\right)}{-1+2 T}\right]$
z_{n}
$\left(\begin{array}{ccc}\frac{-1+2 T}{T} & X_{1} & X_{2} \\ p_{1} & \frac{-T+T^{2}}{-1+2 T} & \frac{1-T}{-1+2 T} \\ p_{2} & \frac{T-T^{2}}{-1+2 T} & \frac{-1+T}{-1+2 T}\end{array}\right)_{h}$

The knot 8_{17}.
$z=\bar{R}_{12,1} \overline{\bar{R}}_{27} \overline{\mathrm{R}}_{83} \overline{\mathrm{R}}_{4,11} \mathrm{R}_{16,5} \mathrm{R}_{6,13} \mathrm{R}_{14,9} \mathrm{R}_{10,15} ;$
Table[z=z//hm $\left.{ }_{1 k+1},\{k, 2,16\}\right] / /$ Last
$\mathbb{E}_{\{ \} \rightarrow\left(\mathrm{p}_{1}, x_{1}\right\}}\left[\frac{1-4 \mathrm{~T}+8 \mathrm{~T}^{2}-11 \mathrm{~T}^{3}+8 \mathrm{~T}^{4}-4 \mathrm{~T}^{5}+\mathrm{T}^{6}}{\mathrm{~T}^{3}}, \theta\right]$

Proof of Theorem 3, (3).
$\left\{\left(\gamma 1=\mathbb{E}_{\{ \} \rightarrow\left\{p_{1}, x_{1}, p_{2}, x_{2}, p_{3}, x_{3}\right\}}\left[\omega,\left\{p_{1}, p_{2}, p_{3}\right\} \cdot\left(\begin{array}{lll}\alpha & \beta & \theta \\ \gamma & \delta & \epsilon \\ \phi & \psi & z\end{array}\right) \cdot\left\{x_{1}, x_{2}, x_{3}\right\}\right]\right)_{b}\right.$,
$\left.\left(\gamma_{1} / / \mathrm{hm}_{1,2-\theta}\right)_{h}\right\}$
$\left\{\begin{array}{llll}\omega & x_{1} & x_{2} & x_{3} \\ p_{1} & \alpha & \beta & \theta \\ p_{2} & \gamma & \delta & \epsilon \\ p_{3} & \phi & \psi & \Xi\end{array}\right)$
References.
On $\omega \varepsilon \beta=$ http://drorbn.net/cat20

1. (2m) Thanks, technicalities.
2. $(4 \mathrm{~m})$ Read the sidebar.
3. (4 m) Quantum invariants in an algebra and the read-out issue.
4. (2m) The Dogma and the exp-issue.
5. (5m) For $a x+b$, get Gaussians! (these are easily computable as we shall see),
6. (3m) In general, get "docile perturbed Gaussians"; the meaning of ϵ (still efficiently computable!).
7. (4m) Packaging.
8. (5m) The "Gold Standard" theorem.
9. (7m) Ending discussion.
10. (24m) Full computability.
