Solve the PgUp/PgDn HandoutBrowser bug!

bring to

1-Smidgen sl_2 Let g_1 be the 4-dimensional Lie algebra $g_1 = 1$ -Smidgen Invariants. Much is the same: The Big g₁ Lemma. Parts 1 and 6 are the same, yet the (b_i, c_i, u, w) over the ring $R = \mathbb{Q}[\epsilon]/(\epsilon^2 = 0)$, with b central and with [w, c] = w, [c, u] = u, and $[u, w] = b - 2\epsilon c$, with CYBE $r_{ij} = 0$. $(b_i - \epsilon c_i)c_j + u_iw_j$ in $\mathcal{U}(g_1)^{\otimes [i,j]}$. Over \mathbb{Q} , g_1 is a solvable approximation of [u, w] = 0. The same is a solvable approximation of [u, w] = 0. The same is a solvable approximation of [u, w] = 0. The same is a solvable approximation of [u, w] = 0. The same is a solvable approximation of [u, w] = 0. The same is a solvable approximation of [u, w] = 0. The same is a solvable approximation of [u, w] = 0. mation of sl_2 : $g_1 \supset \langle b, u, w, \epsilon b, \epsilon c, \epsilon u, \epsilon w \rangle \supset \langle b, \epsilon b, \epsilon c, \epsilon u, \epsilon w \rangle \supset \text{lanced quartic in } \alpha, \beta, c, u, \text{ and } w$: **0-Smidgen** sl_2 ©. Let g_0 be g_1 at $\epsilon = 0$, or $\mathbb{Q}\langle b, c, u, w \rangle / ([b, \cdot] =$ 0, [c, u] = u, [c, w] = -w, [u, w] = b with $r_{ij} = b_i c_j + u_i w_j$. It is $\mathfrak{b}^* \rtimes \mathfrak{b}$ where \mathfrak{b} is the 2D Lie algebra $\mathbb{Q}\langle c, w \rangle$ and (b, u) is the dual basis of (c, w). For topology, it is more valuable than g_1 / sl_2 , but topology already got by other means almost everything go gives. How did these arise? $sl_2 = b^+ \oplus b^-/b =: sl_2^+/b$, where $b^+ = \frac{1}{2}$ Proof. A brutal hell. Problem. We now need to normal-order per $\delta: (c, w) \mapsto (0, c \land w)$. Going back, $sl_2^+ = \mathcal{D}(b^+) = (b^+)^* \oplus b^+ = \frac{1}{2}$ Solution. Borrow some tactics from QFT: $(b, u, c, w) \mid \cdots$. Idea. Replace $\delta \to \epsilon \delta$ over $\mathbb{Q}[\epsilon]/(\epsilon^{k+1} = 0)$. At k = 0, get g_0 . At k = 1, get [w, c] = w, $[w, b'] = -\epsilon w$, [c, u] = u, and likewise $\mathbb{Q}[\epsilon]/(\epsilon^{k+1} = 0)$. Now note that $\mathbb{Q}[\epsilon]/(\epsilon^{k+1} = 0)$. And $\mathbb{Q}[\epsilon]/(\epsilon^{k+1} = 0)$. Now note that $\mathbb{Q}[\epsilon]/(\epsilon^{k+1} = 0)$. $[b', u] = -\epsilon u$, [b', c] = 0, and $[u, w] = b' - \epsilon c$. Now note that $[b', e] = -\epsilon u$, [b', c] = 0, and $[u, w] = b' - \epsilon c$. Now note that [b', e] = 0 and $[u, w] = b' + \epsilon c$. This is [a, b] = 0. $b' + \epsilon c$ is central, so switch to $b := b' + \epsilon c$. This is g_1 . Ordering Symbols. \bigcirc (poly | specs) plants the variables of poly in Finally, the values of the generators \times , \times , \overrightarrow{n} , \overleftarrow{n} , u, and u, are

 $S(\oplus_i g)$ on several tensor copies of $\mathcal{U}(g)$ according to *specs*. E.g., set by brutally solving many equations, non-uniquely. $O\left(c_1^3 u_1 c_2 e^{u_3} w_3^9 | x : w_3 c_1, \ y : u_1 u_3 c_2\right) = w^9 c^3 \otimes u e^u c \in \mathcal{U}(\mathfrak{g})_x \otimes \mathcal{U}(\mathfrak{g})_y$ Pragmatic Simplifications. Get rid of $\zeta = (e^b - 1)/b$ factors by

 $[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}] = 0$ in $\mathcal{U}(\mathfrak{g}_0)^{\otimes 3}$ and, by luck, $= R_{ij} = e^{r_{ij}} = e^{b_i c_j + u_i w_j} \in \mathcal{U}(\mathfrak{g}_{0,j} \oplus \mathfrak{g}_{0,j})$

Lemma. $R_{ij} = e^{b_i c_j + u_i w_j} = \mathbb{O}\left(\exp\left(b_i c_j + \frac{e^{b_i} - 1}{b_i} u_i w_j\right) | i : u_i, \ j : c_j w_j\right)$ Example. $Z(T_0) = \sum_{m,n} \frac{b_i^{m-n} (e^{b_i} - 1)^n}{m! n!} u^n \otimes e^m w^n$.

Example. $Z(T_0) =$ $\mathbb{O}\left(\exp\left(b_5c_1 + \frac{b_3-1}{b_5}u_5w_1 + b_2c_4 + \frac{e^{b_2}-1}{b_2}u_2w_4 - b_3c_6 + \frac{e^{-b_3}-1}{b_3}u_3w_6\right)\right)$ "cuw form" $x: c_1w_1u_2, y: u_3c_4w_4u_5c_6w_6 = 0$

Goal. Write \bigcirc as a Gaussian: ωe^{L+Q} where L bilinear in b_i and c_i term. G: cost per polynomial multiplication op. with integer coefficients, Q a balanced quadratic in u_i and w_i with experimental Analysis ($\omega \in \beta/Exp$). Log-log plot of computation time (sec) vs. crossing number, for all knots with up to 12 crossings. with integer coefficients, Q a balanced quadratic in u_i and w_i with coefficients in $R_S := \mathbb{Q}(b_i, e^{b_i})$, and $\omega \in R_S$.

1a. $N^{uc} := \mathbb{O}(e^{\gamma c + \beta u}|uc) \stackrel{\rightarrow}{=} \mathbb{O}(e^{\gamma c + e^{-\gamma}\beta u}|cu)$ (means $e^{\beta u}e^{\gamma c} = e^{\gamma c}e^{e^{-\gamma}\beta u}$ 1d. $N^{w} := \bigcirc(e^{v} - |u|c) = \bigcirc(e^{v} - |u|)$ (means $e^{w}e^{u} = e^{v}e^{v} = |u|$) 1b. $N^{wc} := \bigcirc(e^{v}e^{v+aw}|wc) = \bigcirc(e^{v}e^{v+e^{v}aw}|cw)$... in the $\{ax + b\}$ group) 2. $\bigcirc(e^{aw+\beta u}|wu) = \bigcirc(e^{-ba\beta+aw+\beta u}|uw)$ (the Weyl relations) 3. $\bigcirc(e^{\delta uw}|wu)e^{\delta u} = e^{v\beta u}\bigcirc(e^{\delta uw}|wu)$, with $v = (1 + b\delta)^{-1}$

(a. expand and crunch. b. use $w = b\hat{x}$, $u = \partial_x$. c. use "scatter and glow".) 4. $\mathbb{Q}(e^{\delta uw}|wu) = \mathbb{Q}(ve^{v\delta uw}|uw)$ (same techniques) 5. $N^{wu} := \mathbb{Q}(e^{\beta u + \alpha w + \delta uw}|wu) \stackrel{?}{=} \mathbb{Q}(ve^{-bv\alpha\beta + v\alpha w + v\beta u + v\beta u + v\beta uw}|uw)$ 6. $N_k^{c_i c_j} := \mathbb{O}(\zeta | c_i c_j) \stackrel{\rightarrow}{=} \mathbb{O}(\zeta / (c_i, c_j \to c_k) | c_k)$

Sneaky. α may contain (other) u's, β may contain (other) w's. Strand Stitching, m_k^{ij} , is defined as the composition

 $c_i u_i \, \overline{w_i c_j} \, u_j w_j \xrightarrow{N_k^{u_i c_j}} c_i \, \overline{u_i c_k} \, \overline{w_k u_j} \, w_j \xrightarrow{N_k^{u_i c_k} / \! / N_k^{u_i c_k}} \overline{c_i c_k} \, \overline{u_k u_k} \, \overline{w_k w_j}$

(note: $deg(b, c, u, w, \epsilon) = (1, 0, 1, 0, 1)$) $\Lambda = -bv \left(v^2 \alpha^2 \beta^2 + 4\delta v \alpha \beta + 2\delta^2\right)/2 - \delta v^3 (3b\delta + 2)\beta^2 u^2/2$ $-b\delta^4 v^3 u^2 w^2 / 2 - \delta^2 v^3 (2b\delta + 1)\beta u^2 w$ $-v^2(2b\delta+1)(v\alpha\beta+2\delta)\beta u-2b\delta^2v^2(v\alpha\beta+\delta)uw$ $+\delta v^3(b\delta+2)\alpha^2w^2/2+2(v\alpha\beta+\delta)c+2\delta v\beta cu+2\delta^2vcuw$ $+2\delta v\alpha cw + \delta^2 v^3 \alpha uw^2 + v^2 (v\alpha\beta + 2\delta)\alpha w.$

Problem. We now need to normal-order perturbed Gaussians!

 $\mathbb{O}(\epsilon P(c,u)e^{\gamma c+\beta u}|uc) = \mathbb{O}(\epsilon P(\partial_{\gamma},\partial_{\beta})e^{\gamma c+\beta u}|uc) =$ $\mathbb{O}(\epsilon P(\partial_{\gamma},\partial_{\beta})e^{\gamma c+e^{-\gamma}\beta u}|cu),$

Note. Strand stitching requires a tiny extra step.

This enables the description of elements of $\hat{\mathcal{U}}(\mathfrak{g})^{\otimes S}$ using commutative polynomials / power series. $\delta \to \delta = \zeta^{-1}\delta, \ \epsilon \to \bar{\epsilon} = \zeta^{-1}\epsilon$. Simplify further by naming 0-Smidgen Invariants. $r = Id \in \mathfrak{b}^- \otimes \mathfrak{b}^+$ solves the CYBE $e^b \to t$; e.g., $v \to \bar{v} = (1 + (t - 1)\delta)^{-1}$. Get confused by renaming $(\bar{u}, \bar{\beta}, \bar{\delta}, \bar{v}) \to (u, \beta, \delta, v)$, and more confused by working with $\mu = v^{-1}$ and $\mathbb{E}(\omega, L, Q, P) := \omega^{-1}(1 + \epsilon \omega^{-4}P)e^{L+\omega^{-1}Q}$, where $\omega \in R := \mathbb{Q}(t_k), L = \sum l_{ij}b_ic_j \text{ with } l_{ij} \in \mathbb{Z}, Q = \sum q_{ij}u_iw_j \text{ with }$ $q_{ij} \in R$, and P is a balanced quartic polynomial in c_i , u_i , and w_i with coefficients in R. Magically, all coefficients are now Laurent

polynomials in the t_k 's. Rough complexity estimate, after $t_k \to t$. n: xing number; w: width, maybe $\sum_{A=0}^{4} \frac{w^{4-d}}{E} \frac{w^d}{F} \frac{n^2}{G} = n^3 w^4 \in [n^5, n^7]$

 $\sim \sqrt{n}$. A: go over stitchings in order. B: multiplication ops per $N^{u_i w_j}$. d: deg of u_i, w_j in P. E: #terms of deg d in P. F: ops per

The Big g_0 Lemma. Under [c, u] = u, [c, w] = -w, and [u, w] = b; sings (mean times) and for all torus knots with up to 48 crossings:

Conjecture (checked on the same collections). Given a knot Kwith Alexander polynomial A, there is a polynomial ρ_1 such that $P = A^{2} \left((t - 2 + t^{-1})\rho_{1} + tAA' \left(\frac{(4 + t - t^{2})(uw + (t - 1)c)}{2(t - 1)} - 1 \right) \right)$

Furthermore, A and ρ_1 are symmetric under $t \to t^{-1}$, so let A^+ and ρ_1^+ be their "positive parts", so e.g., $\rho_1(t) = \rho_1^+(t) + \rho_1^+(t^-) - \rho_1^+(0)$. Power. On the 250 knots with at most 10 crossings, the pair (A, ρ_1) attains 250 distinct values, while (Khovanov, HOMFLY-PT) attains only 249 distinct values. To 11 crossings the numbers are (802, 788, 772) and to 12 they are (2978, 2883, 2786).

 ${\tt z2} = {\tt R_{1,14}^+ \, R_{5,2}^- \, nr_3 \, ul_4 \, R_{19,6}^+ \, R_{7,10}^- \, nl_8 \, ur_9 \, R_{11,20}^+}$ nr₁₂ ul₁₃ R_{15,18} nl₁₆ ur₁₇; (Do[z2 = z2 // $m_{1,k\rightarrow 1}$, {k, 2, 20}]; $z2 = z2 /. a_{-1} \Rightarrow a)$

Questions and To Do List. • Clean up and write up. • Implement well, compute for everything in sight. • Why are our quantities polynomials rather than just rational functions? • Bounds on their degrees? • Their integrality (Z) properties? • Can everything be re-stated using integrals (\int)? • Find the 2-variable version (for knots). How complex is it? • What about links / closed components? • Fully digest the "expansion" theorem; include cuaps. • Explore the (non-)dependence on R. • Is there a canonical R? • What does "group like" mean? • Strand removal? Strand doubling? Strand reversal? • Say something about knot genus. • Find the EK/AT/KV "vertex". • Use as a playground to study associators/braidors. • Restate in topological language. • Study the associated (v-)braid representations. • Study mirror images and the $\mathfrak{b}^+ \leftrightarrow \mathfrak{b}^-$ involution. • Study ribbon knots. • Make precise the relationship with Γ -calculus and Alexander. • Relate to the coloured Jones polynomial. • Relate with "ordinary" q-algebra. • k-smidgen sl_n , etc. • Are there "solvable" CYBE algebras not arising from semi-simple algebras? • Categorify and appease the Gods. Help Needed!

This is all quite new. The overall picture is correct, Disclai but many pieces are certainly not in their final form yet.

The 0-Framed References. Trefoil

[Al] J. W. Alexander, Topological invariants of knots and link, Trans. Amer. Math. Soc. 30 (1928) 275-306.

[BN1] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, web/KBH, arXi-

[BN2] D. Bar-Natan, Polynomial Time Knot Polynomial, research proposal for the 2017 Killam Fellowship, oeß/K17.

[BNG] D. Bar-Natan and S. Garoufalidis, On the Melvin-Morton-Rozansky

conjecture, Invent. Math. 125 (1996) 103-133.

[BNS] D. Bar-Natan and S. Selmani, Meta-Monoids, Meta-Bicrossed Products, and the Alexander Polynomial, J. of Knot Theory and its Ramifications 22-10 (2013), arXiv:1302.5689.

[En] B. Enriquez, A Cohomological Construction of Quantization Functors of Lie Bialgebras, Adv. in Math. 197-2 (2005) 430âAŞ-479, arXiv: th/0212325

[EK] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematica 2 (1996) 1-41, arXiv:q-alg/9506005.

[GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and Potential Counterexamples to the Property 2R and Slice-Ribbon Conjectures, Geom. and Top. 14 (2010) 2305–2347, arXiv:1103.1601.

 [a] A. Haviv, Towards a diagrammatic analogue of the Reshetikhin-Turaev link invariants, Hebrew University PhD thesis, Sep. 2002, arXiv: ath OA/0211031.

[MM] P. M. Melvin and H. R. Morton, The coloured Jones function, Commun. Math. Phys. 169 (1995) 501–520.
[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial,

University of North Carolina PhD thesis, oef/Ov.

[Ro1] L. Rozansky, A contribution of the trivial flat connection to the Jones polynomial and Witten's invariant of 3d manifolds, I, Comm. Math. Phys. 175-2 (1996) 275-296, arXiv:hep-th/9401061.

[Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math.

134-1 (1998) 1–31, arXiv:q-alg/9604005. [Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality

Conjecture, arXiv:math/0201139.
[Se] P. Ševera, Quantization of Lie Bialgebras Revisited, Sel. Math., NS, to appear, arXiv:1401.6164.

	n_{ν}^{r} Alexander's A_{+}	genus / ribbon	l	n' Alexander's A ₊	genus / ribbon
diagram		unknotting number / amphicheiral	diagram		unknotting number / amphicheiral
	01 1	0/~		$3_1^a t - 1$	1/*
	0	0/~		t	1 / 🗶
(\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\}}}}\$}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	$4^a_1 3-t$	1/*	l A	$5\frac{a}{1}$ $t^2 - t + 1$	2/*
A	0	1/~	000	$2t^3 + 3t$	2/*
(2)	$\frac{5a}{2}$ $2t - 3$	1 / 🗶	(2)	$6_1^a = 5 - 2t$	1/~
- XA	5t - 4	1/*	مہ	t - 4	1/*
(D)	$\frac{6a}{2} - t^2 + 3t - 3$	2/*	(%)	$6\frac{a}{3}$ $t^2 - 3t + 5$	2 / x
82	$t^3 - 4t^2 + 4t - 4$	1/*	9/	0	1/~
89	7_1^a $t^3 - t^2 + t - 1$	3 / x	9	$7\frac{a}{2}$ 3t - 5	1/*
000	$3t^5 + 5t^3 + 6t$	3/*	968	14t - 16	1/*
(3)	$7^a_3 2t^2 - 3t + 3$	2/*		$7_4^a - 4t - 7$	1/*
800	$-9t^3 + 8t^2 - 16t + 12$	2/*		32 - 24t	2/*
(8)	$7^a_5 2t^2 - 4t + 5$	2/*	(2)	$\frac{7_6^a}{6} - t^2 + 5t - 7$	2/*
<u> </u>	$9t^3 - 16t^2 + 29t - 28$	2/*	000	$t^3 - 8t^2 + 19t - 20$	1/*
	$\frac{7a}{7}$ $t^2 - 5t + 9$	2/*	F4	$8^a_1 = 7 - 3t$	1/*
9	8 – 3 <i>t</i>	1/*	0,00	5t - 16	1/*
(2)	$8^a_2 - t^3 + 3t^2 - 3t + 3$	3/*	(B)	8^{a}_{3} 9 - 4t	1 / 🗶
900P	$2t^5 - 8t^4 + 10t^3 - 12t^2 +$	13t - 12 2 / X	858	0	2/~
(D)	$8\frac{a}{4} - 2t^2 + 5t - 5$	2/*	(CA)	$8^a_5 - t^3 + 3t^2 - 4t + 5$	3/*
	$3t^3 - 8t^2 + 6t - 4$	2/ X		$-2t^5 + 8t^4 - 13t^3 + 20t^2$	
(F)	$8^a_6 - 2t^2 + 6t - 7$	2/*	(55)	8^a_7 $t^3 - 3t^2 + 5t - 5$	3/*
	$5t^3 - 20t^2 + 28t - 32$	2/*	0-8	$-t^5 + 4t^4 - 10t^3 + 12t^2 -$	13t + 12 1/X