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Cars, Interchanges, Traffic Counters, and a Pretty Darned Good Knot Invariant
Dror Bar-Natan: Talks: Groningen-220620:
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Invariants.

something
easy
Z,
Z[T±1],

etc.

ωεβBhttp://drorbn.net/gro22/Thanks for listening!

Abstract. Reporting on joint work with
Roland van der Veen, I’ll tell you some
stories about ρ1, an easy to define, strong,
fast to compute, homomorphic, and well-
connected knot invariant. ρ1 was first studied by Rozansky and
Overbay [Ro1, Ro2, Ro3, Ov], it has far-reaching generalizations,
it is dominated by the coloured Jones polynomial, and I wish I un-
derstood it. Common misconception. “Dominated”; “lesser”.

Jones:
Formulas stay;
interpretations change with time.

Formulas. Draw an n-crossing knot K as on the ri-
ght: all crossings face up, and the edges are marked
with a running index k ∈ {1, . . . , 2n + 1} and with
rotation numbers ϕk. Let A be the (2n+1)× (2n+1)
matrix constructed by starting with the identity ma-
trix I, and adding a 2 × 2 block for each crossing:

ij

s = −1

Let G = (gαβ) = A−1. For the trefoil example, it is:

A =



1 −T 0 0 T − 1 0 0
0 1 −1 0 0 0 0
0 0 1 −T 0 0 T − 1
0 0 0 1 −1 0 0
0 0 T − 1 0 1 −T 0
0 0 0 0 0 1 −1
0 0 0 0 0 0 1


,

G =



1 T 1 T 1 T 1
0 1 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1−T

T 2−T+1
1

T 2−T+1
1

T 2−T+1
T

T 2−T+1 1
0 0 1−T

T 2−T+1 −
(T−1)T
T 2−T+1

1
T 2−T+1

T
T 2−T+1 1

0 0 0 0 0 1 1
0 0 0 0 0 0 1


.

Note. The Alexander polynomial ∆ is given by

∆ = T (−ϕ−w)/2 det(A), with ϕ =
∑

k

ϕk, w=
∑

c

s.

Classical Topologists: This is boring. Yawn.

A col i+1 col j+1
row i −T s T s − 1
row j 0 −1

c :

i j

s = +1

4

ϕ
4

=
−

1

∗ In algebra x ∼ 0 if for every y in the ideal generated by x, 1 − y is invertible.

Formulas, continued. Finally, set

R1(c) B s
(
g ji

(
g j+1, j + g j, j+1 − gi j

)
− gii

(
g j, j+1 − 1

)
− 1/2

)
ρ1 B ∆2

∑
c

R1(c) −
∑

k

ϕk (gkk − 1/2)

 .
In our example ρ1 = −T 2 + 2T − 2 + 2T−1 − T−2.
Theorem. ρ1 is a knot invariant. Proof: later.
Classical Topologists: Whiskey Tango Foxtrot?

Cars, Interchanges, and Traffic
Counters. Cars always drive forw-
ard. When a car crosses over a bridge
it goes through with (algebraic) pro-
bability T s ∼ 1, but falls off with probability 1 − T s ∼ 0∗. See
also [Jo, LTW].

We seek strong, fast, homomorphic knot and tangle invariants.
Strong. Having a small “kernel”.
Fast. Computable even for large knots (best: poly time).

d1

Why care for “Homomorphic”? Theorem. A knot K is ribbon
iff there exists a 2n-component tangle T with skeleton as below
such that τ(T ) = K and where δ(T ) = U is the untangle:

Homomorphic. Extends to tan-
gles and behaves under tangle
operations; especially gluings
and doublings:

K

τ

Hear more at ωεβ/AKT.

Accompanies ωεβ/APAI

“The Green Function”

https://diamondtraffic.com/productcategory/Portable-Counters
http://arxiv.org/abs/1708.04853
http://arxiv.org/abs/2109.02057
http://arxiv.org/abs/q-alg/9605023
http://www.math.toronto.edu/~drorbn/Talks/Groningen-220620/Ov
http://arxiv.org/abs/hep-th/9401061
http://arxiv.org/abs/q-alg/9604005
http://arxiv.org/abs/math/0201139
http://www.math.toronto.edu/~drorbn/Talks/Groningen-220620/Scha
http://www.math.toronto.edu/~drorbn
http://www.math.toronto.edu/~drorbn/Talks
http://www.math.toronto.edu/~drorbn/Talks/Groningen-220620/
http://drorbn.net/gro22
http://www.math.toronto.edu/~drorbn/Talks/Groningen-220620/AKT
http://www.math.toronto.edu/~drorbn/Talks/Groningen-220620/APAI


Preliminaries
This is Rho1.nb of http://drorbn.net/gro22/ap.
Once[<< KnotTheory`; << Rot.m];

Loading KnotTheory` version

of February 2, 2020, 10:53:45.2097.

Read more at http://katlas.org/wiki/KnotTheory.

Loading Rot.m from http://drorbn.net/gro22/ap

to compute rotation numbers.

The Program
R1[s_, i_, j_] :=

s (gji (gj+1,j + gj,j+1 - gij) - gii (gj,j+1 - 1) - 1/2);

ρ[K_] := Module{Cs, φ, n, A, s, i, j, k, Δ, G, ρ1},

{Cs, φ} = Rot[K]; n = Length[Cs];

A = IdentityMatrix[2 n + 1];

CasesCs, {s_, i_, j_} 

A〚{i, j}, {i + 1, j + 1}〛 +=
-Ts Ts - 1

0 -1
;

Δ = T(-Total[φ]-Total[Cs〚All,1〛])/2 Det[A];

G = Inverse[A];

ρ1 = 
k=1

n
R1 @@ Cs〚k〛 - 

k=1

2 n
φ〚k〛 (gkk - 1/2);

Factor@Δ, Δ
2
ρ1 /. gα_,β_  G〚α, β〛;

The First Few Knots
Table[K  ρ[K], {K, AllKnots[{3, 6}]}]

Knot[3, 1]  
1 - T + T2

T
,

(-1 + T)2 1 + T2

T2
,

Knot[4, 1]  -
1 - 3 T + T2

T
, 0, Knot[5, 1] 


1 - T + T2 - T3 + T4

T2
,

(-1 + T)2 1 + T2 2 + T2 + 2 T4

T4
,

Knot[5, 2]  
2 - 3 T + 2 T2

T
,

(-1 + T)2 5 - 4 T + 5 T2

T2
,

Knot[6, 1] 

-
(-2 + T) (-1 + 2 T)

T
,

(-1 + T)2 1 - 4 T + T2

T2
,

Knot[6, 2]  -
1 - 3 T + 3 T2 - 3 T3 + T4

T2
,

(-1 + T)2 1 - 4 T + 4 T2 - 4 T3 + 4 T4 - 4 T5 + T6

T4
,

Knot[6, 3]  
1 - 3 T + 5 T2 - 3 T3 + T4

T2
, 0

p = 1 − T s

Fast!
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Timing@

ρEPDX14,1, X2,29, X3,40, X43,4, X26,5, X6,95, X96,7,

X13,8, X9,28, X10,41, X42,11, X27,12, X30,15, X16,61,

X17,72, X18,83, X19,34, X89,20, X21,92, X79,22, X68,23,

X57,24, X25,56, X62,31, X73,32, X84,33, X50,35, X36,81,

X37,70, X38,59, X39,54, X44,55, X58,45, X69,46, X80,47,

X48,91, X90,49, X51,82, X52,71, X53,60, X63,74, X64,85,

X76,65, X87,66, X67,94, X75,86, X88,77, X78,93

86.2031, -
1

T8
-1 + 2 T - T2 - T3 + 2 T4 - T5 + T8

-1 + T3 - 2 T4 + T5 + T6 - 2 T7 + T8,
1

T16

(-1 + T)2 5 - 18 T + 33 T2 - 32 T3 + 2 T4 + 42 T5 - 62 T6 -

8 T7 + 166 T8 - 242 T9 + 108 T10 + 132 T11 - 226 T12 +

148 T13 - 11 T14 - 36 T15 - 11 T16 + 148 T17 - 226 T18 +

132 T19 + 108 T20 - 242 T21 + 166 T22 - 8 T23 - 62 T24 +

42 T25 + 2 T26 - 32 T27 + 33 T28 - 18 T29 + 5 T30

Strong!
{NumberOfKnots[{3, 12}],

Length@

Union@Table[ρ[K], {K, AllKnots[{3, 12}]}],

Length@

Union@Table[{HOMFLYPT[K], Kh[K]},

{K, AllKnots[{3, 12}]}]}

{2977, 2882, 2785}

So the pair (∆, ρ1) attains 2,882 distinct values on the 2,977 prime
knots with up to 12 crossings (a deficit of 95), whereas the pair
(HOMFLYPT, Khovanov Homology) attains only 2,785 distinct
values on the same knots (a deficit of 192).

Hoste Ocneanu Millett Freyd Lickorish Yetter Przytycki Traczyk Khovanov
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T−1

0 1

0

0 1 G =

1 T−1 1
0 T−1 1
0 0 1


∑

p≥0(1−T )p = T−1

1 1

i j

11

12

2010

22

30

31

32

10

11

12

20

22

30

31

32

↔

21 21

If this all reads like insanity to you, it should (and you haven’t
seen half of it). Simple things should have simple explanations.
Hence,
Homework. Explain ρ1 with no reference to quantum voodoo
and find it a topology home (large enough to house generaliza-
tions!). Make explicit the homomorphic properties of ρ1. Use
them to do topology!

Theorem. gαβ is the reading of a traffic counter
at β, if car traffic is injected at α (if α = β, the
counter is after the injection point).
Example.

Proof. Near a crossing c with sign s, incoming upper ed-
ge i and incoming lower edge j, both sides satisfy the g-
rules:

giβ = δiβ + T sgi+1,β + (1 − T s)g j+1,β, g jβ = δ jβ + g j+1,β,

and always, gα,2n+1 = 1: use common sense and AG = I (= GA).
Bonus. Near c, both sides satisfy the further g-rules:

gαi = T−s(gα,i+1 − δα,i+1), gα j = gα, j+1 − (1 − T s)gαi − δα, j+1.

α

β

(1−T )2+T (1−T ) (1−T )T

T (1−T )
1−T

T

T 2T (1−T )

T

T 2

=

1−T

Invariance of ρ1. We start with the hardest, Reidemeister 3:

⇒ Overall traffic patterns are unaffected by Reid3!
⇒Green’s gαβ is unchanged by Reid3, provided the cars injection
site α and the traffic counters β are away.
⇒ Only the contribution from the R1
terms within the Reid3 move matters, and
using g-rules the relevant gαβ’s can be pu-
shed outside of the Reid3 area:

(see Invariance.nb at ωεβ/ap)
δi_,j_ := If[i  j, 1, 0];

gRuless_,i_,j_ :=

giβ_  δiβ + Ts gi+1,β + 1 - Ts gj+1,β,

gjβ_  δjβ + gj+1,β, gα_,i  T-s (gα,i+1 - δα,i+1),

gα_j  gα,j+1 - 1 - Ts gαi - δα,j+1

lhs = R1[1, 20, 30] + R1[1, 10, 31] + R1[1, 11, 21] //.

gRules1,20,30 ⋃ gRules1,10,31 ⋃ gRules1,11,21;

rhs = R1[1, 10, 20] + R1[1, 11, 30] + R1[1, 21, 31] //.

gRules1,10,20 ⋃ gRules1,11,30 ⋃ gRules1,21,31;

Simplify[lhs  rhs]

True

Next comes Reid1, where we use results from an earlier example:

R1[1, 2, 1] - 1 (g22 - 1/2) /. gα_,β_ 

1 T-1 1

0 T-1 1

0 0 1

〚α, β〛

1

T2
-
1

T
-

-1 +
1

T

T

Invariance under the other moves is proven similarly.

Wearing my Topology hat the formula for R1, and
even the idea to look for R1, remain a complete my-
stery to me.

Wearing my Quantum Algebra hat, I spy a Heisenberg
algebra H = A〈p, x〉/([p, x] = 1):

cars↔ p traffic counters↔ x
and then with T = e

t, !→ R0 = e
t(xp⊗1−x⊗p) as

(p ⊗ 1)R0 = R0(T (p ⊗ 1) + (1 − T )(1 ⊗ p)),
(1 ⊗ p)R0 = R0(1 ⊗ p).

But contrary to QA’s preferences, H isn’t a Lie algebra L and our
exponent t(xp ⊗ 1 − x ⊗ p) isn’t in L ⊗ L. We solve both issues
by promoting t from a scalar to a central element (now called b),
by demoting xp from a product to a single new generator called
a, and by rescaling y↔ −tp:

−tp↔ y t ↔ b xp↔ a x↔ x
Now � = L〈y, b, a, x〉 is a Lie algebra with

[b,−] = 0, [a, x] = x, [a, y] = −y, [x, y] = b,
and R0 becomes a QA ally as R0 ↔ e

a⊗b+x⊗y.
A little known (but important!) fact is that � is the ε → 0 limit of
gε B slε2+

, given by
[b, x] = εx, [b, y] = −εy, [b, a] = 0,

[a, x] = x, [a, y] = −y, [x, y] = b + εa.
gε still represents into H, via

y→ −tp − ε · xp2, b→ t + ε · xp, a→ xp, x→ x,
(abstractly, gε acts on its Verma module U(gε)/(U(gε)〈y, a, b −
εa − t〉) � Q[x] by differential operators, namely via H) so con-
structions inU(gε) can be pushed to H.
At invertible ε the Lie algebra gε is isomorphic to sl2 plus a central
factor, and it can be quantized much like sl2 to get an algebra QU
(with q = e

~ε):
[b, a] = 0, [b, x] = εx, [b, y] = −εy,

[a, x] = x, [a, y] = −y, xy − qyx =
1 − e−~(b+εa)

~
.

Now QU has an R-matrix,

R =
∑

m,n≥0

ynbm ⊗ (~a)m(~x)n

m![n]q!
, ([n]q! is a “quantum factorial”)

and so it has a “universal quantum invariant” which is equivalent
to the coloured Jones polynomial. Expanding in powers ε, taking
the coefficient of ε1, and retracting back to U(gε) and then to H,
we get our formulas for ρ1. But QU is a quasi-triangular Hopf al-
gebra, and hence ρ1 is homomorphic. Read more at [BV1, BV2]
and hear more at ωεβ/SolvApp, ωεβ/Dogma, ωεβ/DoPeGDO, ω-
εβ/FDA, ωεβ/AQDW.
Also, we can (and know how to) look at higher powers of ε and
we can (and more or less know how to) replace sl2 by arbitrary
semi-simple Lie algebra (e.g., [Sch]). So ρ1 is not alone!

12

3
ϕ2 =1

http://www.math.toronto.edu/~drorbn/Talks/Groningen-220620/ap
http://www.math.toronto.edu/~drorbn/Talks/Groningen-220620/SolvApp
http://www.math.toronto.edu/~drorbn/Talks/Groningen-220620/Dogma
http://www.math.toronto.edu/~drorbn/Talks/Groningen-220620/DoPeGDO
http://www.math.toronto.edu/~drorbn/Talks/Groningen-220620/FDA
http://www.math.toronto.edu/~drorbn/Talks/Groningen-220620/FDA
http://www.math.toronto.edu/~drorbn/Talks/Groningen-220620/AQDW


An "infrastructure project" is hard (and sometimes non-glorious) work that's done now and pays 
off later.

An example, and the most important one within knot theory, is the tabulation of knots up to 10 
crossings. I think it precedes Rolfsen, yet the result is often called "the Rolfsen Table of Knots", as 
it is famously printed as an appendix to the famous book by Rolfsen. There is no doubt the 
production of the Rolfsen table was hard and non-glorious.  Yet its impact was and is 
tremendous. Every new thought in knot theory is tested against the Rolfsen table, and it is hard 
to find a paper in knot theory that doesn't refer to the Rolfsen table in one way or another.

A second example is the Hoste-Thistlethwaite tabulation of knots with up to 17 crossings. 
Perhaps more fun to do as the real hard work was delegated to a machine, yet hard it certainly 
was: a proof is in the fact that nobody so far had tried to replicate their work, not even to a 
smaller crossing number. Yet again, it is hard to overestimate the value of that project: in many 
ways the Rolfsen table is "not yet generic", and many phenomena that appear to be rare when 
looking at the Rolfsen table become the rule when the view is expanded. Likewise, other 
phenomena only appear for the first time when looking at higher crossing numbers.

But as I like to say, knots are the wrong object to study in knot theory. Let me quote (with some 
variation) my own (with Dancso) "WKO" paper:

Studying knots on their own is the parallel of studying cakes and pastries as they come out of 
the bakery - we sure want to make them our own, but the theory of desserts is more about 
the ingredients and how they are put together than about the end products. In algebraic 
knot theory this reflects through the fact that knots are not finitely generated in any sense 
(hence they must be made of some more basic ingredients), and through the fact that there 
are very few operations defined on knots (connected sums and satellite operations being the 
main exceptions), and thus most interesting properties of knots are transcendental, or non -
algebraic, when viewed from within the algebra of knots and operations on knots (see [ AKT-
CFA]).

The right objects for study in knot theory are thus the ingredients that make up knots and 
that permit a richer algebraic structure. These are braids (which are already well -studied and 
tabulated) and even more so tangles and tangled graphs.

Thus in my mind the most important missing infrastructure project in knot theory is the 
tabulation of tangles to as high a crossing number as practical. This will enable a great amount 
of testing and experimentation for which the grounds are now still missing. The existence of such 
a tabulation will greatly impact the direction of knot theory, as many tangle theories and issues 
that are now ignored for the lack of scope, will suddenly become alive and relevant. The overall 
influence of such a tabulation, if done right, will be comparable to the influence of the Rolfsen 
table.

Aside. What are tangles? Are they embedded in a disk? A ball? Do they have an "up side" and a "down side"? 
Are the strands oriented? Do we mod out by some symmetries or figure out the action of some symmetries? 
Shouldn't we also calculate the affect of various tangle operations (strand doubling and deletion, juxtapositions, 
etc.)? Shouldn't we also enumerate virtual tangles? w-tangles? Tangled graphs?

In my mind it would be better to leave these questions to the tabulator. Anything is better than nothing, yet 
good tabulators would try to tabulate the more general things from which the more special ones can be sieved 
relatively easily, and would see that their programs already contain all that would be easy to implement within 
their frameworks. Counting legs is easy and can be left to the end user. Determining symmetries is better done 
along with the enumeration itself, and so it should.

An even better tabulation should come with a modern front-end - a set of programs for basic 
manipulations of tangles, and a web-based "tangle atlas" for an even easier access.

Overall this would be a major project, well worthy of your time.

K11n150

The interchange of I-95 and I-695,

northeast of Baltimore. (more)

From [AKT-CFA]

From [FastKh]

http://katlas.org/

(Source: http://katlas.math.toronto.edu/drorbn/AcademicPensieve/2012-01/)

The Most Important Missing Infrastructure Project in Knot Theory
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