Dror Bar－Natan：Talks：Groningen－2002：$\quad \omega \varepsilon \beta:=h t t p: / /$ drorbn．net／gr20／回思回Strand Doubling and Reversal．

Abstract．This will be a very＂light＂talk：I will explain why about 13 years ago，in order to have a say on some problems in knot theory，I＇ve set out to find tangle invariants with some nice compositional properties．I will not mention that in recent joint work with Roland van der Veen we＇ve found such invariants，and we are now struggling to make use of them．

Vo＇s Thesis［Vo］．A proof of the Fox－Milnor theorem for ribbon knots using this technology（and more）．
Implementation key idea：

$\left(\zeta / / \mathrm{m}_{12 \rightarrow 1} / / \mathrm{m}_{13 \rightarrow 1}\right)=\left(\zeta / / \mathrm{m}_{23 \rightarrow 2} / / \mathrm{m}_{12 \rightarrow 1}\right)$
True＿＿，R3
．．divide and conquer！

A Bit about Ribbon Knots．A＂ribbon knot＂is a knot that can be presented as the boundary of a disk that has＂ribbon singularities＂， but no＂clasp singularities＂．A＂slice knot＂is a knot in $S^{3}=\partial B^{4}$ which is the boundary of a non－singular disk in B^{4} ．Every ribbon knots is clearly slice，yet，
Conjecture．Some slice knots are not ribbon．
Fox－Milnor．The Alexander polynomial of a ribbon knot is always of the form $A(t)=f(t) f(1 / t)$ ．
（also for slice）
Theorem．K is ribbon iff it is κT for a tangle T for which τT is the untangle U ．

The Gold Standard is set by the＂Г－calculus＂Alexan－ der formulas［BNS，BN］．An S－component tangle T has $\Gamma(T) \in R_{S} \times M_{S \times S}\left(R_{S}\right)=\left\{\begin{array}{c|c}\omega & S \\ \hline S & A\end{array}\right\}$ with $R_{S}:=\mathbb{Z}\left(\left\{T_{a}: a \in S\right\}\right):$ $\left({ }_{a} \nearrow_{{ }_{2}},{ }_{b}\right.$ 久 $\left._{a}\right) \rightarrow$\begin{tabular}{c|cc}
1 \& a \& b

a \& 1 \& $1-T_{a}^{ \pm 1}$

$\quad T_{1} \sqcup T_{2} \rightarrow$

$\omega_{1} \omega_{2}$ \& S_{1} \& S_{2}

\hlineb \& 0 \& $T_{a}^{ \pm 1}$

ω \& a \& b \& S

\hlinea \& α \& β \& θ

b \& γ \& δ \& ϵ

S \& ϕ \& ψ \& Ξ
\end{tabular}\(\xrightarrow[T_{a}, T_{b} \rightarrow T_{c}]{m_{c}^{a b}}\left(\begin{array}{cccc}(1-\beta) \omega \& c \& S

\hline c \& \gamma+\frac{\alpha \delta}{1-\beta} \& \epsilon+\frac{\delta \theta}{1-\beta}

S \& \phi+\frac{\alpha \psi}{1-\beta} \& \Xi+\frac{\psi \theta}{1-\beta}\end{array}\right)\)
For long knots，ω is Alexander，and that＇s the fastest Alexander algorithm I know！

Dunfield：1000－crossing fast．

Fact．Γ is better viewed as an invariant of a certain class of 2 D knotted objects in \mathbb{R}^{4} ［BND，BN］．
 Fact．$\quad \Gamma$ is the＂0－loop＂part of an invariant that generalizes to ＂n－loops＂（1D tangles only，see $\omega \varepsilon \beta /$ talks and future publications with van der Veen）．

Speculation．Stepping stones to categorification？
［BN］D．Bar－Natan，Balloons and Hoops and their Universal References． Finite Type Invariant，BF Theory，and an Ultimate Alexander Invariant，ω－ $\varepsilon \beta / \mathrm{KBH}$ ，arXiv：1308．1721．
［BND］D．Bar－Natan and Z．Dancso，Finite Type Invariants of W－Knotted Ob－ jects I：w－Knots and the Alexander Polynomial，Alg．and Geom．Top．16－2 （2016）1063－1133，arXiv：1405．1956，$\omega \varepsilon \beta / \mathrm{WKO}$.
［BNS］D．Bar－Natan and S．Selmani，Meta－Monoids，Meta－Bicrossed Products， and the Alexander Polynomial，J．of Knot Theory and its Ramifications 22－10 （2013），arXiv：1302．5689．
［GST］R．E．Gompf，M．Scharlemann，and A．Thompson，Fibered Knots and Potential Counterexamples to the Property $2 R$ and Slice－Ribbon Conjectures， Geom．and Top． 14 （2010）2305－2347，arXiv：1103．1601．
［Vo］H．Vo，Alexander Invariants of Tangles via Expansions，University of To－ ronto Ph．D．thesis，$\omega \varepsilon \beta / \mathrm{Vo}$ ．

[^0]Leopold Kronecker（modified）
www．katlas．org

Proof of the Tangle Characterization of Ribbon Knots

$$
\left(\begin{array}{c}
\text { twig le has } 2 n \\
\text { steads, hare } \\
n=2
\end{array}\right)
$$

Theorem. A knot K is ribbon iff there exists a tangle T whose τ closure is the untangle and whose K closure is K.

Proof. The backward \Longleftarrow implication is easy:

For the forward implication, follow the following 5 steps:

Step I: In-situ cosmetics.
At end: D is a tree of chord-and-arc polygons.

Step 2: Near-situ cosmetics.
At end: D is tree-band-sum of n unknotted disks.

Step 3: Slides.
At end: D is a linear-band-sum of n unknotted disks.

Step 4: Exposure!
The green domain is contractible - so it can be shrank, moved at will (with the blue membrane following along), and expanded back again.
At end: D has ($n-1$) exposed bridges which when turned, make D a union of n unknotted disks.

Step 5: Pulling bottom handles avoiding the obstacles.
At end: Theorem is proven.

At end: Theorem is proven.

[^0]: ＂God created the knots，all else in topology is the work of mortals．＂

