Abstract. Reporting on joint work with Roland van der Veen, I'll tell you some stories about ρ_{1}, an easy to define, strong, fast to compute, homomorphic, and wellconnected knot invariant. ρ_{1} was first studied by Rozansky and Overbay [Ro1, Ro2, Ro3, Ov], it has far-reaching generalizations, it is dominated by the coloured Jones polynomial, and I wish I understood it. Common misconception. "Dominated" \Rightarrow "lesser".

We seek strong, fast, homomorphic knot and tangle invariants. ${ }^{\text {weg }}$, Strong. Having a small "kernel".
Fast. Computable even for large knots (best: poly time).

Gompf-ScharlemannThompson

Homomorphic. Extends to tangles and behaves under tangle operations; especially gluings and doublings:
Why care for "Homomorphic"? Theorem. A knot K is ribbon iff there exists a $2 n$-component tangle T with skeleton as below such that $\tau(T)=K$ and where $\delta(T)=U$ is the untangle:

[BV1] D. Bar-Natan and R. van der Veen, A Polynomial Time Knot
References. Polynomial, Proc. Amer. Math. Soc. 147 (2019) 377-397, arXiv:1708.04853.
[BV2] D. Bar-Natan and R. van der Veen, Perturbed Gaussian Generating Functions for Universal Knot Invariants, arXiv:2109.02057.
[Dr] V. G. Drinfel'd, Quantum Groups, Proc. Int. Cong. Math., 798-820, Berkeley, 1986. [Jo] V. F. R. Jones, Hecke Algebra Representations of Braid Groups and Link Polynomials, Annals Math., 126 (1987) 335-388.
[La] R. J. Lawrence, Universal Link Invariants using Quantum Groups, ProcẊVII Int. Conf. on Diff. Geom. Methods in Theor. Phys., Chester, England, August 1988. World Scientific (1989) 55-63.
[LTW] X-S. Lin, F. Tian, and Z. Wang, Burau Representation and Random Walk on String Links, Pac. J. Math., 182-2 (1998) 289-302, arXiv:q-alg/9605023.
[Oh] T. Ohtsuki, Quantum Invariants, Series on Knots and Everything 29, World Scientific 2002.
[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial, Ph.D. thesis, University of North Carolina, August 2013, $\omega \varepsilon \beta / \mathrm{Ov}$.
[Ro1] L. Rozansky, A Contribution of the Trivial Flat Connection to the Jones Polynomial and Witten's Invariant of 3D Manifolds, I, Comm. Math. Phys. 175-2 (1996) 275-296, arXiv:hep-th/9401061.
[Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the MelvinMorton Expansion of the Colored Jones Polynomial, Adv. Math. 134-1 (1998) 1-31, arXiv:q-alg/9604005.
[Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:math/0201139.
[Sch] S. Schaveling, Expansions of Quantum Group Invariants, Ph.D. thesis, Universiteit Leiden, September 2020, $\omega \varepsilon \beta /$ Scha.

Jones:

Formulas stay; interpretations change with time.
Formulas. Draw an n-crossing knot K as on the right: all crossings face up, and the edges are marked with a running index $k \in\{1, \ldots, 2 n+1\}$ and with rotation numbers φ_{k}. Let A be the $(2 n+1) \times(2 n+1)$ matrix constructed by starting with the identity matrix I, and adding a 2×2 block for each crossing:

Note. The Alexander polynomial Δ is given by

$$
\Delta=T^{(-\varphi-w) / 2} \operatorname{det}(A), \quad \text { with } \varphi=\sum_{k} \varphi_{k}, w=\sum_{c} s .
$$

Classical Topologists: This is boring. Yawn.
Formulas, continued. Finally, set

$$
\begin{gathered}
R_{1}(c):=s\left(g_{j i}\left(g_{j+1, j}+g_{j, j+1}-g_{i j}\right)-g_{i i}\left(g_{j, j+1}-1\right)-1 / 2\right) \\
\rho_{1}:=\Delta^{2}\left(\sum_{c} R_{1}(c)-\sum_{k} \varphi_{k}\left(g_{k k}-1 / 2\right)\right) .
\end{gathered}
$$

In our example $\rho_{1}=-T^{2}+2 T-2+2 T^{-1}-T^{-2}$.
Theorem. ρ_{1} is a knot invariant.
Proof: later.
Classical Topologists: Whiskey Tango Foxtrot?
Cars, Interchanges, and Traffic Counters. Cars always drive forward. When a car crosses over a bridge it goes through with (algebraic) pro-
 bability $T^{s} \sim 1$, but falls off with probability $1-T^{s} \sim 0^{*}$. See also [Jo, LTW].

