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Agenda. Modest, off-topic, light conversation.

Abstract. Let there be scones! Our view of knot theory is biased in favour of
pancakes. Technically, if K is a 3D knot that fits in volume V (assuming
fixed-width yarn), then its projection to 2D will have about V 4/3 crossings. You’d
expect genuinely 3D quantities associated with K to be computable straight from a
3D presentation of K . Yet we can hardly ever circumvent this V 4/3 � V
“projection fee”. Exceptions probably include the hyperbolic volume and certainly
include finite type invariants (as we shall prove). But knot polynomials and knot
homologies seem to always pay the fee.

If you can, please turn your video on! (And mic, whenever needed).

Thanks for inviting me to the Fields Institute! As most of you have never been
there, here’s a picture of the lecture room:

A recurring question in knot theory is “do we have a 3D understanding of our
invariant?”

I See Witten and the Jones polynomial.

I See Khovanov homology.

I’ll talk about my perspective on the matter. . .

We often think of knots as planar dia-
grams. 3-dimensionally, they are embed-
ded in “pancakes”.
This matters when

I We make statements about
“random knots”.

I We figure out computational
complexity. Knot by Lisa Piccirillo, pancake by DBN

Yarn ball courtesy of Heather Young
‘Connector’ by Alexandra Griess and Jorel Heid (Hamburg, Germany). Image from

www.waterfrontbia.com/ice-breakers-2019-presented-by-ports/.

V ∼ L3

n = xing number ∼ L2L2 = L4 = V 4/3

(“∼” means “equal up to constant terms
and log terms”)
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Conversation Starter 1. A knot invariant ζ is said to be Computationally 3D, or
C3D, if

Cζ(3D,V )� Cζ(2D,V 4/3).

This isn’t a rigorous definition! It is time- and näıveté-dependent! But there’s
room for less-stringent rigour in mathematics, and on a philosophical level, our
definition means something.

http://drorbn.net/fi20
http://www.waterfrontbia.com/ice-breakers-2019-presented-by-ports/


Theorem 1. Let lk denote the linking number of a 2-component link. Then
Clk(2D, n) = n while Clk(3D,V ) = V , so lk is C3D!
Proof. WLOG, we are looking at a link in a grid, which we project as on the right:

Here’s what it look like, in the case of a knot:

And here’s a bigger knot.

This may look like a lot of in-
formation, but if V is big, it’s
less than the information in a pla-
nar diagram, and it is easily com-
putable.

There are 2L2 triangular “cross-
ings fields” Fk in such a projec-
tion.

WLOG, in each Fk all over
strands and all under strands are
oriented in the same way and all
green edges belong to one com-
ponent and all red edges to the
other.
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So 2L2 times we have to solve the problem “given two sets R and G of integers in
[0, L], how many pairs {(r , g) ∈ R × G : r < g} are there?”. This takes time ∼ L
(see below), so the overall computation takes time ∼ L3.

Below. Start with rb = cf = 0 (“reds before” and “cases found”) and slide O from
left to right, incrementing rb by one each time you cross a • and incrementing cf
by rb each time you cross a •:

Great Embarrassment 1. I don’t know if any of the Alexander, Jones,
HOMFLY-PT, and Kauffman polynomials is C3D. I don’t know if any
Reshetikhin-Turaev invariant is C3D. I don’t know if any knot homology is C3D.

Or maybe it’s a cause for optimism — there’s still something very basic we don’t
know about (say) the Jones polynomial. Can we understand it well enough
3-dimensionally to compute it well? If not, why not?

Conversation Starter 2. Similarly, if η is a stingy quantity (a quantity we expect
to be small for small knots), we will say that η has Savings in 3D, or “has S3D” if
Mη(3D,V )� Mη(2D,V 4/3).

Example (with van der Veen). It is probably true that the hyperbolic volume has
S3D.

Great Embarrassment 2. I don’t know if the genus of a knot has S3D! In other
words, even if a knot is given in a 3-dimensional, the best way I know to find a
Seifert surface for it is to first project it to 2D, at a great cost.

Theorem 2. If ζ is a finite type invariant of type d then Cζ(3D,V ) is at most
∼ V d .

It is known that Cζ(2D, n) is at most ∼ nd (e.g., my Polynomial Invariants are
Polynomial), and one may expect that for most ζ, Cζ(2D, n) is no better than
∼ nd (exceptions: high coefficients of the Alexander polynomial and other
poly-time knot polynomials).

As nd ∼ V
4
3
d � V d , Theorem 2 says “most finite type invariants are C3D; the

ones in doubt are the lucky few that can be computed unusually quickly”.



A knot invariant is “type d = 3” if it vanishes on all (d + 1 = 4)-cubes like
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All pre-categorification knot polynomials are power series whose coefficients are
finite type invariants. (This is sometimes helpful for the computation of finite type
invariants, but rarely helpful for the computation of knot polynomials).

Gauss diagrams and sub-Gauss-diagrams:

1

2

3

4

5

6

7

8

+

−

+

−

1 2 3 4 5 6 7 8

−

+

Let ϕd : {knot diagrams} → 〈Gauss diagrams〉 map every knot diagram to the sum
of all the sub-diagrams of its Gauss diagram which have at most d arrows.

Under-Explained Theorem (Goussarov-Polyak-Viro). A knot invariant ζ is of type
d iff there is a linear functional ω on 〈Gauss diagrams〉 such that ζ = ω ◦ ϕd .
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Strategy. Count instances of
−+

by counting instances that fall into specific
crossing fields as follows:

Fk1 Fk2

α(1) = 1 β(1) = 3 α(2) = 4β(2) = 2

B1 B2 B3 B4

here each Bi is the set of green/red strands
within the relevant crossing field, having
some specified orientations. There are two
functions, t : Bi → Z and z : Bi → [0..L]
defined on each Bi .

Just picking the crossing fields costs ∼ L2d . The rest is handled by the following:

Counting Problem. Given α(j), β(j) ∈ [1..2d ] for j ∈ [1..d ], given 2d “buckets”
— sets Bi with i ∈ [1..2d ] — and given functions t : (B := ∪Bi )→ Z and
z : B → [0..L] such that z |Bi

is injective, compute |A|, where

A =

{
b = (bi )

2d
i=1 ∈

∏
Bi :

t(b1) < t(b2) < . . . < t(b2d)
∀j ∈ [1..d ], z(bα(j)) < z(bβ(j))

}
.

Proposition (Itai Bar-Natan). This computation can be carried out in time ∼ Ld .

And hence the full computation of ϕd takes time ∼ L2dLd = V d , as claimed.

Lemma (same thing, minus the z data and conditions). Given 2d “buckets” —
sets Bi with i ∈ [1..2d ] — and given t : (B := ∪Bi )→ Z. Assuming |Bi | ∼ L, the
quantity

N =
∣∣∣{b = (bi )

2d
i=1 ∈

∏
Bi : t(b1) < t(b2) < . . . < t(b2d)

}∣∣∣
can be computed in time ∼ L2 (in fact, ∼ L, but we don’t need that).
Proof of Lemma. For ι ∈ [1..2d ] and τ ∈ t(B) let

Nι,τ =
∣∣∣{b = (bi )

ι
i=1 ∈

∏
Bi : t(b1) < t(b2) < . . . < t(bι) = τ

}∣∣∣ .
Then each Nι,τ is computable from the Nι−1,τ in time ∼ L, and there are ∼ L such
computations to carry out. This done, N =

∑
τ∈t(B)N2d ,τ .

�

Re-inserting z — the idea.
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Proof of Bar-Natan’s Proposition. WLOG L + 1 = 2p for some p ∈ N. Let
Sq = {0, 1}q and let S =

⋃p−1
q=0 Sq be the set of binary sequences of any length

q ∈ [0..p − 1]. Let σ = (σj)
d
j=1 a d-tuple of such binary sequences, where the

length of σj is |σj | = qj ∈ [0..p − 1]. Then

A =
⋃

q∈[0..p−1]d
Aq where Aq =

⋃
σ : ∀j |σj |=qj

Aσ and

Aσ =

b = (bi )
2d
i=1 ∈

∏
Bi :

t(b1) < t(b2) < . . . < t(b2d)

∀j ∈ [1..d ]
z(bα(j)) = σj0∗
z(bβ(j)) = σj1∗

(in binary)

 .

By the lemma, |Aσ| can be computed in time ∼
(

L

2
min |σj |

)2
. There are 2

∑
qj Aσ’s in

Aq. so Aq can be computed in time ∼ 2
∑

qj
(

L

2
min qj

)2
. The number of choices for q

is ∼ 1, so the only term that matters is the worst-case term, which is when for all j ,

qj = p − 1. In this case the computation time is ∼
(
2p−1

)d ( L
2p−1

)2 ∼ Ld · 12 = Ld .
�

If time — a word about braids.

Thank You!


