Dror Bar-Natan: Talks: Budapest-2311:

Thanks for inviting me to Budapest!
Shifted Partial Quadratics, their Pushforwards, and Signature Invariants for Tangles

http://drorbn.net/bu23 [=]4[=]
[=]

IAbstract. Following a general discussion of the co-
imputation of zombians of unfinished columbaria (with
examples), I will tell you about my recent joint work
w/ Jessica Liu on what we feel is the “textbook” exten-
sion of knot signatures to tangles, which for unknown

quadratic form on a v.s. V over C is a quadratic Q: V — C,
or a sesquilinear Hermitian (-,-) on V X V (so (x,y) = m and
Q@) = (y,y)), or given a basis n; of V*, a matrix A = (a;;) with
= A" and Q = Y a;;fm;. The signature o of Q is oy — 0_,
here for some P, PTAP = diag(1, ", 1,-1,7~,-1,0,...).

Jessica Liu

reasons, is not in any of the textbooks that we know.

Jacobian, Hamiltonian, Zombian|
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(Columbaria in an East Sydney C

IPrior Art on signatures for tangles / braids. =~ Gambaudo

and Ghys [GG], Cimasoni and Conway [CC], Conway [Co],

Merz [Me]. All define signatures of tangles / braids by first clo-

sing them to links and then work hard to derive composition pro-

perties.

'\Why Tangles? e Faster!

e Conceptually clearer proofs of invariance
(and of skein relations).

e Often fun and consequential:

\n
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o The Jones Polynomial ~» The Temperley-Lieb Algebra.
o Khovanov Homology ~» “Unfinished complexes”, complexes
in a category.

I g
o The Kontsevich Integral ' & P
~» Associators. :g - pagapas - 2
o HFK ~ OMG, type D, 15 L/U
type A, Aoy - ... A U

Zombies: Freepik.com

Computing Zombians of Unfinished Columbaria.
e Must be no slower than for finished ones.
e Future zombies must be able to complete the

A Partial Quadratic (PQ) on V is a quadratic Q defined only on

pullback y*Q,aPQon V.

a subspace Dy C V. We add PQs with Dy, .9, = Do, N Dy, .
Given a linear y: V — W and a PQ Q on W, there is an obvious

Theorem 1. Given a linear ¢: V — W and a PQ Q on V, there is
a unique pushforward PQ ¢.Q on W such that for every PQ U on
W,ov(Q+¢"U) = O-ker¢(Q|ker¢) +ow(U + ¢.0).

(If you must, D(¢.0Q) = ¢(anng(D(Q) N ker ¢)) and (¢.O)(w) = O(v),
where v is s.t. ¢(v) = w and Q(v, rad Qlierg) = 0).

Gist of the Proof. : W
1 0,
simul. 0 . '+1: 0 0
A B | row/col |- T, __|L___
—_— |
ops o ,0 C
B' | U L
- W, W 0 W CTIU+F
|

I[Exactly what we want, if the Zombian is the signature!

V: The full space of faces. wlw|wlw M’V?
W: The boundary, made of gaps. ol el W

Q: The known parts. - -

U: The part yet unknown. - facT —

oyv(Q + ¢*(U)): The overall Zombian. s U

0 (Qlkerg): An internal bit. U + ¢, Q: A boundary bit.
IAnd so our ZPUC is the pair § = (0(Qlierg), ¢+ Q).

computation.

A Shifted Partial Quadratic (SPQ) on V is a pair § = (s €

3
o

e Future zombies must not even know the size &2 & #ubi 4 &
of the task that today’s zombies were facing.

e We must be able to extend to ZPUCs, Zombie [
Processed Unfinished Columbaria!

I[Example / Exercise. Compute the determinant 5

of a 1,000 x 1,000 matrix in which 50 entries

are not yet given.

Homework / Research Projects. ¢ What with ZPUCs? e Use

this to get an Alexander tangle invariant.

L

Columbarium near Assen|
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Reminders. TL: {knots} — {matrices / quad. forms} i
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With |w| =1,7=1-w, and r =t + 1, A is made by adding terms:

X_iino _ Xoijik- o
i,jk,~1 —r =t 2t F\i it ro -t =2t t\i

AN .j R f 0 7 ofj * k/.j -t 0 & O0fyj

-l J 26 t -r —flk - J -2t t r —f|k

N ¢ 0 -t 0)1 47 i N t 0 -t 0)I
%8 N

~‘es  Onthe occasion of my visit to Hungary I
| @.5:s8, made a 63,202 Ft donation to the Hattér
HATTER Society, https://hatter.hu
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17, Q a PQ on V). addition also adds the shifts, pullbacks keep the

1V and U on W we have oy(S + ¢*U) = ow(U + ¢.S) (and this

B Theorem 2. ¢* and ¢, are functorial. Also, if @/ =

shifts, yet .S = (5 + Tkerp(Qlkerg), Q) and o(S) = s + o(Q).
Theorem 1’ (Reciprocity). Given ¢: V — W, for SPQs S on

characterizes ¢..S ).

/6, @ is surjective, B is injective, and imy D kerd,

(02
o> 0
VT AB
then y* v, = 6,//8*. Finally, ¢* is additive but ¢, isn’t. * 75 °

82 SPQS| ki | 4 ¥
Definition. S|(8& &1 '={ Q } ! g141 12

on (g;) gl 1 g
Theorem 3. {S(eyclic sets)} is a |, 5}; fsg 23g34f1 4
planar algebra, with compositions 824 ;
SDN(S)) = $PWH(ED,; S 1), where |4 2 &
Wp: {fiy — (gu) maps every face L Zﬁ . D)

of D to the sum of the input gaps Connection Diagram
adjacent to it and ¢”: (f;) — (g;) maps every face to the sum
of the output gaps adjacent to it. So for our D, Yp is fi — g,
2 = g1+ 81+ 8+ 8 i o g fa o gus fs o g3t g, fo P g,
iy gn+gn and ¢ is fi o g1, oo g2+ g6 o2 0, fi > g3, f5 - 0,
fe > &5, f1 1 &4 .

Theorem 4. TL, defined on X and X as before, extend

to planar algebra morphisms 7'L: {tangles} — {S}.
Comment. There’s a nearly-identical “Kashaev version”.

Kashae

N s
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Implementation (sources: http://drorbn.net/bu23/ap). I Pretty-Printing.

like it most when the implementation matches the math perfectly.

We failed here.
Once[<< KnotTheory  ];

Loading KnotTheory™ version
of February 2, 2020, 10:53:45.2097.
Read more at http://katlas.org/wiki/KnotTheory.

Utilities. The step function, algebraic numbers, canonical forms.

6[x_] /; NumericQ[x] := UnitStep[x]
w2[v_][p_] :=Module[{q = Expand[p], n, c},
If[q===9,0,
c = Coefficient[q, w, n = Exponent[q, w]];
cv v w2[vlg-c (w+0™)"]]];
sign[&_] := Module[{n, d, v, p, rs, e, k},
{n, d} = NumeratorDenominator[&£];
(n, dy /= wExponent[n,w]/2+Exponent[n,w,Min]/2;
p = Factor [w2[v]@n*w2[v]ed /. v~ 4u?-2];
rs = Solve|[p == @, u, Reals];
If[rs === {}, Sign[p /. u-e],
rs = Union@ (u /. rs);
Sign[ (-1)*=FPonenti®-ul coefficient[p, u, e]] + Sum[
k =0;
While[ (d = RootReduce[dy, ,si3P /. U T])
If[EvenQ[k], @, 2Sign[d]] *6[u-r],
{r, rs}]

=0];

]
]

SetAttributes[B, Orderless];
CF[b B] := RotateLeft[#, FirsteOrdering[#] -1] & /@
DeleteCases[b, {}]
CF[& ] :=Module[{¥s = UnioneCases[&, ¥_|¥_, ]},
Total[CoefficientRules[&, ¥s] /.
(ps_ » c_) = Factor[c] « Times e@ ys™] |
CFL{}] ={};
CF[c List] :
Module[ {¥s = Unione@Cases[C, ¥ , ©], ¥},
CF /@DeleteCases[0] [
RowReduce [Table[d,r, {r, ¢}, {¥, ¥S}1].¥s] 1]
(&)
r_Rule*

=8 /. {¥o ¥, ¥ ¥, w0, c_Complex » c*};
= {r, r*}
RulesOf[y; +rest_.] :=
CF[PQ[C , g 1] :=Module[{nC =CF[C]},
PQ[nC, CF[g /. Union @@ RulesOf /@nc]] ]
CF[Zy [o., PG_1] = Zcppy [0, CF[Pq]]

(yi » -rest)*;

Format[=, z[o_ , PQ[C_, g_1]] :=Module[{¥s},
¥s =¥» & /@Joineeb;
Column|[ {TraditionalForme o,
TableForm[Join[
Prepend[""] /@ Table[TraditionalForm[d .r],
{r, ¢}, {c, ¥s}l,
{Prepend[""] [
Join ee
b/.{L_,m__,r_}:»
{DisplayForm@RowBox [ {" (", L}],
m, DisplayForm@RowBox[{r, ")"}1}) /.
1_Integer > ¥i 1},
MapThread [Prepend,
{Table[TraditionalForm[d,,.q]l, {r, ¥s*},
{c, ¥s}1, ¥s*}1]
1, TableAlignments —» Center]
}, Center] ];

The Face-Centric Core.
Zp; [ol_, PQICI_, q1_11©%p, [02_, PQ[C2_, g2_1] ":=
CF@Zj0in(p1,b21 [01 + 02, PQ[c1 2, q1 +q2]];

GT for Gap Touch:

Ti ,5 @Zrqri___,i_,ri___},{lj___,j_sri__ _alas
PQ[C , q_1] :=
CF@=g((ri,Li,,ri,Li,i},bs1 [T PRICU {¥i - ¥} 911

cor-don < (srdn)

oA
N THEpRpeDICTIONARY
1, 1. Aline of people, military posts, or ships stationed around
an area to enclose or guard it: a police cordon.
2. Arope, line, tape, or similar border stretched around an

area, usually by the police, indicating that access is

restricted.
use ¢, to kill its row and
s pép #0 column, drop a (01) summand
; R 10

¢=0,1#0 use Atokill 6, let s += sign(4)
¢=0,1=0 append 6 to Creg.

Cordon; @Zgrq1i [o,PQ[c.,q_]] :=
Module[{¢ = 6,,C, A = 85,,4,45 No = 0, nC, nq, p},
{p} = FirstPosition[(# =!=9) & /@ ¢, True, {0}];
{nc, nq} = Which|[
p>0, {C,q} /. (yi~»-CcIpl/¢lpI)”
A=1=0, (no +=sign[A];
{csars. (vi»>-(6g,9)/2)" /. (xi~»0)'}),
2===0, {cU {059}, a9/ (vi>0)"}];
CF@3gmoste(ri,Li},bs] [NT,
PQ[NnC, nql /. (Yiaste(ri,Li} = YFirste(ri,(i}) ] ]

)i_)ri })bs___]

/. (Yi_’e)+)
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Strand Operations. c for contract, mc for magnetic contract:

b_al__1:=

Ci ,j @U:Zprqi i ,ri_ },{___,i,
t // GT; rirsteqri,Liy // Cordon;
Ci ,j@t:Zgr¢ i,5, 3, [__1:= Cordon et

Ci ,j @t:Zgrq5, iy, [__1:= Cordon;et
Ci ,j@t:Zgr¢ 5 ,i, 3, [__1:= Cordon; et

Ci ,j@t:Zgri, .53, 1[__]:=Cordon;et
me[& ] :=&81/7/.
T T SN SRS % U RV SO 1 S
Zer(__,iLi.__ b a1 B, iy, a[__17;5
1+] =0 Ci,j@f
The Crossings (and empty strands).
TL@Pi_’j_ o= CF@ZB[{i’j}] [0, PQ[{}, 0] ]
TLIx :X[1_,J ,kR , L 1] :=
TLeIf[PositiveQ[x1, X_i,5,k,-Ls X-j,k,0,-i] 3
TL[(X DX | Y)fs__] 9 Module[{t =1-w, r, ys, m},

r=t+t"; ys=vy,&/@{fs};

m=I-F[x === A,
-r -t 2t t* PooE =R @
-t* @ t* o -t* @ t* 0 ]
2t* t -r -t*|° | -2t t r  -t*|!°
t @ -t o t o -t 0

CFeZpi(rs)) [0, PQL{}, )’S*.m.xs]]]

Evaluation on Tangles and Knots.
TLIK ] :=
Fold[mc[#1®#2] &, Zg[; [0, PQ[{}, @11,
List e@ (TL /@ PD@K)] /.
6[c_+u] /; Abs[c] 21 6[c];
TLSig[K ] := TL[K][1]

Reidemeister 3.
R3L = PD[X_3,5,4,-15 X_3,7,6,-5»

X_G)Q,s_,—ll];
R3R = PD[X_3,5,4,-25 X_4,6,8,-15

X.5,7,9,-613 ANl
TL@R3L == TL@R3R

True
TLeR3L
-1
(vy_3 Y7 Yo Y38 Y-o1 Y_2)
Y3 Wil w-1 -2 w 2 0 -l
w w
¥ -ed ) vl ) ) )
w w
Yo -2 1-w w?+1 et ) 2
w w w w
Ys 0 —w-1 w?1 -u-d -2
w w w
V-1 0 0 0 w-1 0 1-w
_ 2
Yo o —w-1 0 2w 2w 2 akS

Reidemeister 2. 56
TL@PD[X-2,4,3,-1: Y—4,6,5,—3] 3
0
1 0 -1 ) 12
(Y2 Ye s Y-1)

Y-2 0 () 0 0
Y6 0 7] (7] (%]
s 0 0 0 0
Y-1 0 7] (7] (%]

TL@PD[X-2,4,3,-1, i-4,6,5,-3] = GT5, ,@TL@PD[P_3 5, P_3,6]
True

Reidemeister 1.
TL@PD[X_3’3,2)_1] == TL@P_]_,Z

True

A Knot.
f = TLSig[Knot[8, 5]]
V3 } )

20[- 2 ] ~20[ 2 1y

ze[u - () -0.630...

+ 2e[u - (e.630...

Plot[f, {u, -1, 1}]

The Conway-Kinoshita-
Terasaka Tangles.

Tl = PD[¥-6,2,7,-1: X_2,8,3,-7»

*1 ® | 16 A
1SN 5

Céhway Kinoshita Terasaka
T2 = PD[X-6,2,7,-1: X_2,8,3,-7»

9 x 10
3 3 €
11 s
7 2
X X 6 %
-8,4,9,-3> X_12,6,13,-5> /7 7

X_4,12,5,-115 X_10,15,11,-14> X-15,1e,1s,-9]3

X_g8,4,9,-35 X_11,6,12,-55

X-4,11,5,-1o] 5

TL[T1]
—ZQ(U— ﬂ) +29(u+ ﬁ) -1
2 2
(Y-10 Yo Y1 Y12)
Y-10 0 l-w w-1
— w-1 2w w-1 2w
o T wz—w+1 - 7 N wz—w+1
Y1 ) w-1 0 1-w
w-1 2w w-1 2w
v12 N w w2-w+1 w w2-w+l
TL[T2]
0
(v-14 Y16 Y1 Y13)
Y 14 0 1-w w-1
Y16 -1 _% _w-t %
w w -3 w +5w -3 w+1 w w -3 w +5w -3 w+1
Y1 0 w-1 0 1-w
Yi3 e % o1 _%
w w -3 w +5w -3 w+1 w w -3 w +5w -3 w+1



2(w-1)w 2 (w-1)

2(0-1) Qo)

Examples with non-trivial co- 14 )7 W Js
dimension. 24 T
_ Y 7
Bl = PD[X-s,z,s,-l: X-s,a,s,-z: YZ
6 o
X_11,4,12,-35 X_12,10,13,-9» s 0 |
X-13,7,14,-6] H ; 6 ; 2
v 11
B2 = PD[X X
-5,2,6,-1> X-9,3,10,-2> ; “\; |5 1Ns o
X_10,7,11,-65 X_12,4,13,-3, X-13,8,14,-7]5
TL[B1]
)
1 ) -1 ) : ) -2 )
0 0 1 : ) -2 1
(¥-11 Ya Y1e Y7 Y14 Y -5 Y-8)
Y-11 [} 2] [} 0 2] %] 2]
% ) 0 ) ° = ° o3 0
Y10 0 ) 0 ) -t ) 2 )
- 12 (0-1)2
¥7 ] 0 ] 0 o3 0 - 0
Yia e (w-Dw) -1 (w-1)2 e - ot °
Y1 0 0 0 ) w-1 ) 1-w )
= 2 w-1 (0-1)2
Y-s 0 (w-1) w 1-w -(w-1) 1-w - 0
Vs 0 ) 0 ) ) 0 )
TL[B2]
o
(Y-12 Ya Y8 Y14 11 Y1 Y-5 Y
V12 -ty -1 2(w-1 2ep? 2wy 0 2wy
Va o ) = 0 [ [ [ 0
Vs led) 1-w w12 ot 2] A e
Y14 2 (w-1)2 0 1‘3‘2 y-2 1 ° 2!21 2 (w-2. 1
o 2 (w-1 ° 2w-1)w ((w-1) (2w-1)) 0 H“z ot 2ot 2 (w-1)2
Y ] 0 ] w-1 o 1 ]
o
o

A B\ deta) (I A'B 1 I A-'B
—1 ’
cC U lc v "lo v-ca'B

so det (A B ) = det(A) det(U — CA™'B).

. _1?
c U (what if AA™1?)

Questions. 1. Does this have a topological meaning? 2. Is there a
“Kashaev conjecture” for tangles? 3. Find all solutions of R123 in
our “algebra”. 4. Braids and the Burau representation. 5. Recover
the work in “Prior Art”. 6. Are there any concordance properties?
7. What is the “SPQ group”? 8. The jumping points of signatures
are the roots of the Alexander polynomial. Does this generalize
to tangles? 9. Which of the three Cordon cases is the most com-
mon? 10. Are there interesting examples of tangles for which
rels is non-trivial? 11. Is the pg part determined by I'-calculus?
12. Is the pg part determined by finite type invariants? 13. Do-
es it work with closed components / links? 14. Strand-doubling
formulas? 15. A multivariable version? 16. Mutation invariance?
17. Ribbon knots? 18. Are there “face-virtual knots”? 19. Do-
es the pushforward story extend to ranks? To formal Gaussian
measures? To super Gaussian measures?

Proof of Theorem 1.

Uniqueness: If A and B are 2 pushforwards, then ow (U + A) =
ow(U + B) for all PQs U on W.

Thus Dy = Dp, because otherwise if w € Dy \ Dp, by ta-
king U(w) = 1 on Dy = span{w}, we getow(U +A) =1 #0 =
ow(U + B). Furthermore, A and B must agree where they are both
defined, because by taking U(w) = w on Dy = span{w}

we get (U + A)(w) = w = —(U + B)(w), so we must have

A(w) = B(w) to satisfy ow(U + A) = ow(U + B).

Existence: Define ¢.Q by Dy, o = ¢(anng(ker ¢)) and ¢.Q(w) =
O(v) where v € anng(ker ¢). Note that ¢..Q is well-defined.

First consider when U = 0 on all of W. Let K be a maximal
non-degenerate subspace of ker ¢. Then Q = Qlg @ Qlanny(x)> and
we can write anng(K) = R® A ® B where R = radg(ker ¢) and
A, B are chosen so that A C anng(R) and B C anng(K) \ anng(R).
Since Q : R — B is surjective, for any v € Dy there is some
r, € R such that Q(r,, B) = Q(v, B). If we choose the r, so that
Iy, + Fy, = Iy 4y,, then we can replace Aby A" = {a—r, : a € A}
and Bby B’ = {b— 3r : b € B} to get Q = Qlx @ Olgan' @ Ol
Then notice that

o oy(0Olx) = Okerp(Qlkerg)

e oy(Qlrep) =0

* ov(Qla) = ow(9.0)

so we get oy(Q) = O—kerq&(Qlkerqﬁ) + ow(¢.0).

Now for an arbitrary U, note that (Q + ¢*U)lkery = Qlkery and
¢.(Q + ¢*U) = ¢.0 + U so we can replace Q in the U = 0 case
by O + ¢*U to get the general case.

Proof of Theorem 2.

It’s clear that pullback is functorial and that pushforward by the
identity is the identity. To show (¢¥). = ¢, use theorem 1
repeatedly to get

o((py).0 + U)

=0 (Q + (¢¥)"U)

=0(Q + Y ¢"U) = 0(Qlkergy)

=00+ ¢"U) + 0(Qlkery) = 0(Qliergy)

=0(¢h:Q + U) + 0(Qliery) + 0+ Qlierp) — T (Qliergy)

=0(¢p.Q + U)
for any U, where the last step uses theorem 1 on Qlg, with the
map ¥ : ker ¢y — ker ¢.
To show a.y* = B*d., first note that 8B, is the ide- 4
ntity on any PQ since f is injective, so vy .7

@.7' Q=B By Q=B Gy Q=F5yyQ " °
As B%6.y«y*Q and %6, Q have the same values whe-
re they are both defined, it remains to show that they

have the same domain. Since « is surjective and y is
surjective onto ker(d), we see that

B7'6(A) = p7'6(A nimy)
for any subspace A. By taking A = annp(ker 6), the two sides of
the equality become the domains of 6. Q and 8*9.y.y* Q.

%

o=<0
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