
Somethings simple:

Numbers, polynomials,

matrices, etc.
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Abstract. For the purpose of today, an “I-Type Knot Invariant”
is a knot invariant computed from a knot diagram by integrating
the exponential of a Lagrangian which is a sum over the features
of that diagram (crossings, edges, faces) of locally defined qua-
ntities, over a product of finite dimensional spaces associated to
those same features.
Q. Are there any such things?
A. Yes.
Q. Are they any good?
A. They are the strongest we know per CPU cycle, and are excel-

lent in other ways too.
Q. Didn’t Witten do that back in 1988 with path integrals?
A. No. His constructions are infinite dimensional and far from

rigorous.
Q. But integrals belong in analysis!
A. Ours only use squeaky-clean algebra.
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Knots.

The Good. 1. At the centre of low dimensional topology.
2. “Invariants” connect to pretty much all of algebra.
The Agony. 1&2 don’t talk to each other.
• Not enough topological applications for all these invariants.
• The fancy algebra doesn’t arise naturally within topology.
=⇒We’re still missing something about the relationship between
knots and algebra.
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(Alternative) Gausssian Integration.
Goal. Compute
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Solution. Set
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Then I1(0) is what we want, I0(x) = (det A)−1/2P(x) exp V(x), and
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While with gi j the inverse matrix of ai j,
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Hence
∂λIλ(x) =

1
2

gi j∂xi∂x j Iλ(x),
and therefore

Iλ(x) = (det A)−1/2 exp
(
λ

2
gi j∂xi∂x j

)
P(x) exp V(x).
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