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Title. Knot Invariants from Finite Dimensional Integration.

Abstract. For the purpose of today, an "I-Type Knot Invariant” is a knot invariant computed from a
knot diagram by integrating the exponential of a Lagrangian which is a sum over the features of that
diagram (crossings, edges, faces) of locally defined quantities, over a product of finite dimensional
spaces associated to those same features.

Q. Are there any such things?

A. Yes.

Q. Are they any good?

A. They are the strongest we know per CPU cycle, and are excellent in other ways too.
Q. Didn't Witten do that back in 1988 with path integrals?

A. No. His constructions are infinite dimensional and far from rigorous.

Q. But integrals belong in analysis!

A. Ours only use squeaky-clean algebra.
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Dror Bar-Natan: Talks: Beijing-2407:
Knot Invariants from Finite Dimensional Integration

Thanks for inviting me to China! [®]#[=]
http://drorbn.net/icbs24 [x]

IAbstract. For the purpose of today, an “I-Type Knot Invariant”

is a knot invariant computed from a knot diagram by integrating

the exponential of a Lagrangian which is a sum over the features

of that diagram (crossings, edges, faces) of locally defined qua-

ntities, over a product of finite dimensional spaces associated to

those same features.

Q. Are there any such things?

A. Yes.

Q. Are they any good?

A. They are the strongest we know per CPU cycle, and are excel-
lent in other ways too.

Q. Didn’t Witten do that back in 1988 with path integrals?

A. No. His constructions are infinite dimensional and far from
rigorous.

Q. But integrals belong in analysis!

A. Ours only use squeaky-clean algebra.
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