The "hand merge" coefficients come from ordimy BCH :

$$
\log \left(e^{\psi^{x}} e^{\frac{\psi^{y}}{}}\right)=F\left(h_{x}, h_{y}\right) \psi^{x}+G\left(h_{x}, h_{y}\right) \psi^{y}
$$

According to "BCH in Blobs.nb", $F \rightarrow \frac{\left(-1+e^{x}\right)(x+y)}{\left(-1+e^{x+y}\right) x}, G \rightarrow \frac{e^{x}\left(-1+e^{y}\right)(x+y)}{\left(-1+e^{x+y}\right) y}$, or, in human language:

$$
\begin{aligned}
F & =\frac{x+y}{x} \frac{e^{x}-1}{e^{x+y}-1} \quad G=\frac{x+y}{y} \frac{e^{y}-1}{e^{x+y}-1} e^{x} \quad \begin{array}{l}
\text { The first thing } \\
\text { to check wald } \\
\text { be associativity }
\end{array} \\
& =\frac{e^{x}-1}{x} \frac{x+y}{e^{x+y}-1}=\frac{e^{y}-1}{y} \frac{x+y}{e^{x+y}-1} e^{x} \text { This wants }
\end{aligned}
$$

To degree 1, $F=1-\frac{y}{2}, G=1+\frac{x}{2}$, so

$$
\log \left(e^{\psi^{x}} e^{\psi^{y}}\right)=x+y+\frac{[x, y]}{2}=x+y+\frac{c_{x} y-c_{y} x}{2}
$$

In agreement with the above.

$$
\begin{aligned}
& \frac{a-1}{a b-1} \rightarrow \frac{b^{-1}-1}{a^{-1} b^{-1}-1}=\frac{a-a b}{1-a b}=a\left(\frac{b-1}{a b-1}\right) \\
& \frac{a-1}{a b-1}=\frac{\sqrt{a}(\sqrt{a}-1 / \sqrt{a})}{\sqrt{a b}(\sqrt{a b}-1 / \sqrt{a b})}=\frac{1}{\sqrt{b}}\left(\frac{\sqrt{a}-1 / \sqrt{a}}{\sqrt{a b}-1 / \sqrt{a b}}\right) \\
& \frac{a-1}{a b-1}=\frac{1-a^{-1}}{a^{-1}-b}
\end{aligned}
$$

Aside. $w / j_{x}=\frac{e^{x}-1}{x}, j_{x} / j_{-x}=l^{x}$
Inlud, $\frac{e^{x}-1}{x} / \frac{l^{-x}-1}{-x}=\frac{e^{-x}-1}{1-l^{-x}}=e^{x} \frac{1-l^{-x}}{1-e^{-x}}=e^{x}$

In cued, $\frac{e^{x}-1}{x} / \frac{e^{-1}}{-x}=\frac{l-1}{1-e^{-x}}=e^{x} \frac{1-e^{2}}{1-e^{-x}}=e^{x}$
Asdic $c^{2}: i_{x} \cdot j_{-x}=\frac{\left(e^{x}-1\right)\left(e^{-x}-1\right)}{-x^{2}}=\frac{e^{x}-2+e^{-x}}{x^{2}}$ not illuminating.

I also need to know the crossover coefficients.

$$
e^{a d H}\left(l^{T}\right)=e^{H} e^{T} e^{-H} \Rightarrow l^{H} l^{T}=e^{a d H}\left(e^{T}\right) e^{H}
$$

A Formalism would be better han an intuition. I need bettor need bettor management 10

$$
\xlongequal{=e^{c_{x}} a_{z y}+\frac{1-e^{c_{x}}}{c_{x}} c_{z} a_{x y}} \quad\left(1-\frac{1-e^{x}}{x}\right)^{-1}=
$$

$$
\begin{aligned}
& \mathrm{cyx}=\text { Coefficient[mix, } \mathrm{t}[\mathrm{y}] \mathrm{h}[\mathrm{x}] \text {]; } \\
& \text { rest }=\operatorname{mix} / .\{\mathrm{h}[\mathrm{x}]->0, \mathrm{t}[\mathrm{y}]->0\} \text {; } \\
& j x=\operatorname{If}\left[\operatorname{cox}===0,1, \left.\frac{\left(-1+e^{c o \mathrm{x}}\right)}{\operatorname{cox}} \right\rvert\,\right. \\
& \text { rest+ }
\end{aligned}
$$

