
FINITE TYPE INVARIANTS OF W-KNOTTED OBJECTS IV: SOME

COMPUTATIONS

DROR BAR-NATAN

Abstract. In the previous three papers in this series,
WKO1
[WKO1]–

WKO3
[WKO3], Z. Dancso and

I studied a certain theory of “homomorphic expansions” of “w-knotted objects”, a certain
class of knotted objects in 4-dimensional space. When all layers of interpretation are stripped
off, what remains is a study of a certain number of equations written in a family of spaces
Aw, closely related to degree-completed free Lie algebras and to degree-completed spaces of
cyclic words.

The purpose of this paper is to introduce mathematical and computational tools that
enable explicit computations (up to a certain degree) in these Aw spaces and to use these
tools to solve the said equations and verify some properties of their solutions, and as a
consequence, to carry out the computation (up to a certain degree) of certain knot-theoretic
invariants discussed in

WKO1
[WKO1]–

WKO3
[WKO3] and in my related paper

KBH
[BN3].

Contents

1. Introduction 2
2. Group-like elements in Aw 4
2.1. A brief review of Aw 4
2.2. Some premliminaries about free Lie algebras and cyclic words 9
2.3. The AT presentation El of A

w
exp 10

2.4. The KBH presentation Es of A
w
exp 12

2.5. The conversion between the AT and the KBH presentations. 18
References 20

Date: first edition in future, this edition Jul. 24, 2014. The arXiv:????.???? edition may be older.
2010 Mathematics Subject Classification. 57M25.
Key words and phrases. w-knots, w-tangles, Kashiwara-Vergne, associators, double tree, Mathematica,

free Lie algebras.
This work was partially supported by NSERC grant RGPIN 262178. Electronic version and related files

at
WKO4
[WKO4], http://drorbn.net/AcademicPensieve/Projects/WKO4.

1

DRAFT! See http://drorbn.net/AcademicPensieve/Projects/WKO4/

http://front.math.ucdavis.edu/????.????
http://drorbn.net/AcademicPensieve/Projects/WKO4

1. Introduction

Within the previous three papers in this series
WKO1
[WKO1]–

WKO3
[WKO3]1 a number of intricate

equations written in various graded spaces related to free Lie algebras and to spaces of cyclic
words were examined in detail, for good reasons that were explained there and elsewhere.
The purpose of this paper is to introduce mathematical tools (on the upper parts of pages)
and computational tools (on the lower parts of pages, below the long dividing lineC1) that
allow for the explicit solution of these equations, at least up to a certain degree.

The equations we have in mind arise in other papers and appear throughout this paper.
Yet to help our impatient readers orient themselves, here’s a “flash summary” of the most
important equations and their topological and algebraic significance:

=

V V ∗ = 1; V C12 = C1C2
AlekseevTorossian:KashiwaraVergne
[AT]: j(F) ∈ im(δ̃)

Unitarity and CapYang-Baxter Reidemeister-4

R23R13V = R12,3
AlekseevTorossian:KashiwaraVergne
[AT]: F (x+ y) = log exey

together, “the Kashiwara-Vergne equations”

=

R12R13R23 = R23R13R12

Buckle.

MORE

the key to
knot invariants

Twist.

ΦΦ1,23,4Φ234 = Φ12,3,4Φ1,2,34

“Drinfel’d associators”

=

u u

with Kashiwara-Vergne

Θ = V −1RV 21

compatibility of associators

Pentagon.

Why bother? What do limited explict computations add, given that these intricate equa-
tions are known to be soluble, and given that the conceptual framework within which these

1Also within my
KBH
[BN3], and within papers by Alekseev, Enriquez, and Torossian

AlekseevTorossian:KashiwaraVergne,
[AT, AET], and within

Kashiwara’s and Vergne’s
KashiwaraVergne:Conjecture
[KV], and also within many older papers about Drinfel’d associators (e.g. Drin-

fel’d’s
Drinfeld:QuasiHopf, Drinfeld:GalQQ
[Dr1, Dr2] and my

Bar-Natan:NAT
[BN2].

C1If you are not interested in the actual computations, it is safe to ignore the parts of pages below the long
dividing line and restrict to “strict” mathematics, which is always above that line.
The programs described in this paper were written in Mathematica

Wolfram:Mathematica
[Wo] and are available at

WKO4
[WKO4]. Be-

fore starting with any computations, download the packages FreeLie.m and AwCalculus.m and type within
Mathematica:

The last line above declares that by default we wish the computer to print series within graded spaces (such
as free Lie algebras) to degree 4.

2

DRAFT! See http://drorbn.net/AcademicPensieve/Projects/WKO4/

http://drorbn.net/AcademicPensieve/Projects/WKO4/FreeLie.m
http://drorbn.net/AcademicPensieve/Projects/WKO4/AwCalculus.m

equations make sense is reasonably well understood
WKO1
[WKO1]–

WKO3
[WKO3]? My answers are

three:

1. Personally, my belief in what I can’t compute decays quite rapidly as a function of the
complexity involved. Even if the overall picture is clear, the details will surely go wrong,
and sooner or later, something bigger than a detail will go wrong. Even a limited compu-
tation may serve as a wonderful sanity check. In situations such as ours, where many signs
and conventions need to be decided and may well go wrong, even a low-degree computa-
tion increases my personal confidence level by a great degree. Given computations that
work to degree 6 (say), it is hard to imagine that a detail was missed or that conventions
were established in an inconsistent manner. In fact, if the computer programs are clear
enough and are shown to work, these programs become the authoritative declerations of
the details and conventions.

2. The computational tools introduced here may well be used in other contexts where free
Lie algebras and/or cyclic words arise.

3. The papers
WKO1,WKO2
[WKO1, WKO2] (and likewise

KBH
[BN3]) are about equations, but even more so,

about the construction of certain knot and tangle invariants. With the tools presented
here, the invariants of arbitrary knotted objects of the types studied in

WKO1,WKO2,KBH
[WKO1, WKO2,

BN3] may be computed.

The equations of
WKO1
[WKO1]–

WKO3
[WKO3] always involve group-like, or “exponential” elements,

and are written in some spaces of “arrow diagrams” that go under the umbrella name Aw.
Hence a crucial first step is to find convenient presentations for the group-like elements Aw

exp

in Aw-spaces. It turns out that there are (at least) two such presentations, each with its own
advantages and disadvantages. Hence in Section

sec:Awsec:Aw
2 we recall Aw briefly (

subsec:Awsubsec:Aw
2.1), discuss some

free-Lie-algebra preliminaries (
subsec:FLsubsec:FL
2.2), discuss the “AT” and the “KBH” presentations of Aw

exp

(
subsec:ATsubsec:AT
2.3 and

subsec:KBHsubsec:KBH
2.4), and describe how to convert between the two presentations (

subsec:Conversionsubsec:Conversion
2.5).

MORE: summaries of the remaining sections.

3

DRAFT! See http://drorbn.net/AcademicPensieve/Projects/WKO4/

2. Group-like elements in Aw

sec:Awsubsec:Aw

2.1. A brief review of Aw. Let S = {s1, s2, . . . } be a finite set of “strand labels”. The
space Aw(↑S) is the graded vector space2 of diagrams made of (vertical) “strands” labeled
by the elements of S, and “arrows” as summarized by the following picture:

−−−→
STU1:

= −

−−−→
IHX: = −0 = +

l r r l

−→
AS:

. . .s1 s2 sn

−−−→
STU2:

= −

−−−→
STU3 =TC:

= −0

• Diagrams are connected.
• Vertices are 2-in 1-out.
• Vertices are oriented.
• Degree is half the number of

trivalent vertices.
• The “skeleton” ↑S is the union

of the vertical strands.

In topology, elements of Aw(↑S) are closely related to (finite type invariants of)
simply knotted 2-dimensional tubes in R4 (

WKO1
[WKO1]–

WKO3
[WKO3],

KBH
[BN3]). In Lie the-

ory, they represent “universal” g-invariant tensors in U(Ig)⊗S, where Ig := g ⋉ g∗3 and g

is some finite dimensional Lie algebra (
WKO1
[WKO1]–

WKO3
[WKO3]). Several significant Lie theoretic

problems (e.g., the Kashiwara-Vergne problem,
KashiwaraVergne:Conjecture, AlekseevTorossian:KashiwaraV
[KV, AT, WKO2]) can be interpreted as

problems about Aw(↑S).

com:SortedForm Comment 2.1. Using the
−−−→
STU2 relation one may sort the skeleton vertices in every D ∈

Aw(↑S) so that along every skeleton component all arrow heads appear ahead of all arrow
tails, and by a diagrammatic analogue of the PBW theorem (compare

Bar-Natan:OnVassiliev
[BN1, Theorem 8]),

this sorted form is unique modulo
−−−→
STU 1, TC,

−→
AS and

−−−→
IHX relations.

def:Operations Definition 2.2. A number of operations are defined on elements of the Aw(↑S) spaces:

,D1 D2 D1 D2
1. If S1 and S2 are disjoint, then given D1 ∈ Aw(↑S1

) and
D2 ∈ Aw(↑S2

), their unionD1⊔D2 ∈ Aw(↑S) is obtained
by placing them side by side as illustrated on the right.

In topology, ⊔ corresponds to the disjoint union of 2-links. In Lie theory, it
corresponds to the map U(Ig)⊗S1 ⊗ U(Ig)⊗S2 → U(Ig)⊗(S1⊔S2).

2. Given D1 ∈ Aw(↑S) and D2 ∈ Aw(↑S), their product D1D2 ∈ Aw(↑S) is obtained by
“stacking D2 on top of D1”:

(D1, D2) = ,D1 D2

D2

D1

= D1D2. (1) eq:TubeProduct

In topology, the stacking product corresponds to the concatanation operation
on knotted tubes, akin to the standard stacking product of tangles. In Lie

theory, it comes from the algebra structure of U(Ig)⊗S.

2For simplicity we always work over Q.
3In earlier papers we have used the order Ig = g∗ ⋊ g.

4

DRAFT! See http://drorbn.net/AcademicPensieve/Projects/WKO4/

1 3
0, ,0

1 2 3

�(dη1 , dη2, dη3)3. Given D ∈ Aw(↑S) and s ∈ S, D�dηs is the result of
deleting strand s from D and mapping it to 0 if any
arrow connects to s, as illustrated on the right.

In topology, dηs is the removal of one component from a 2-link. In Lie theory
it corresponds to the co-unit η : U(Ig) → Q.

, ,
�(dA1, dA2, dA3)

(−)1

1 321 32 1 32

(−)1(−)0

1 32

4. Given D ∈ Aw(↑S) and s ∈ S,
D�dAs is the result of “flipping
over stand s and multiplying by
(−) sign for each arrow whose head connects to s”, as illustrated above.

In topology, dAs is the reversal of the 1D orientation of a knotted tube
WKO2
[WKO2].

In Lie theory, it is the antipode of U(Ig) combined with the sign reversal ϕ →
−ϕ acting on the g∗ factor of Ig. When elements of U(Ig) are interpreted as differential
operators acting on functions on g, dA corresponds to the L2 adjoint.

, ,
�(dS1, dS2, dS3)

1 32

(−)2

1 321 32 1 32

(−)1(−)1
5. Similarly, D�dSs is the result of

“flipping over stand s and mul-
tiplying by a (−) sign for each
arrow head or tail that connects to s”, as illustrated above4.

In topology, dSs is the reversal of both the 1D and the 2D orientation of a
knotted tube

WKO2
[WKO2]. In Lie theory, it is the antipode of U(Ig).

1 32 1 2

�dm23
2 =

1 2

6. Given D ∈ Aw(↑S), given a, b ∈ S, and given c 6∈
S \ {a, b}, D�dmab

c is the result of “concatanating
strands a and b and calling the resulting strand c,
as illustrated on the right.

In topology, dmab
c is the “internal concatanation” of two tubes within a single 2-

link, akin to the “capping” operation that combines two strands of an ordinary
tangle into a single “longer” one. In Lie theory, it is an “internal product”, U(Ig)⊗n →
U(Ig)⊗(n−1) which “merges” two factors within U(Ig)⊗n.

1 32

�d∆2

2′2′′

1 32”2’

7. Given D ∈ Aw(↑S), given a ∈ S, and given b, c 6∈ S \a,
D�d∆a

bc is the result of “doubling” strand a, calling the
resulting “daughter strands” b and c, and summing over all
ways of lifting the arrows that were connected to a to either b or c (so if there are k arrows
connected to a, D�d∆a

bc is a sum of 2k diagrams).
In topology, d∆ is the operation of “doubling” one component in a 2-link. In
Lie theory, it is the co-product ∆: U(Ig) → U(Ig)⊗2 acting on the a factor in

U(Ig)⊗S, extended by the identity acting on all other factors.

8. Finally, the operation dσa
b : A(↑S) → A(↑S\{a}⊔{b} does nothing but renaming the strand

a to b (assuming a ∈ S and b 6∈ S\{a}).
def:Operationsdef:Operations
2.2

We note that the product operation (D1, D2) 7→ D1D2 can be implemented using the
union operation ⊔, the strand-concatanation operation dm, and some renaming — namely,
if S̄ = {s̄ : s ∈ S} is some set of “temporary” labels disjoint from S but in a bijection with

4The letter S is used here for both “a set of strands” and “an operation similar to an antipode”. Hopefully
no confusion will arise.

5

DRAFT! See http://drorbn.net/AcademicPensieve/Projects/WKO4/

S, then

D1D2 =

(

D1 ⊔

(

D2�
∏

s

dσs
s̄

))

�
∏

s

dmss̄
s . (2) eq:multiplem

Therefore below we will sometime omit the implementation of (D1, D2) 7→ D1D2 provided
all other operations are implemented.

We note thatAw(↑S) is a co-algebra, with the co-product�(D), for a diagramD represent-
ing an element of Aw(↑S), being the sum of all ways of dividing D between a “left co-factor”
and a “right co-factor” so that connected components of D\↑S (D with its skeleton removed)
are kept intact (compare with

Bar-Natan:OnVassiliev
[BN1, Definition 3.7]).

def:GroupLike Definition 2.3. An element Z of Aw(↑S) is “group-like” if �(Z) = Z ⊗ Z. We denote the
set of group-like elements in Aw(↑S) by Aw

exp(↑S).

We leave it for the reader to verify that all the operations defined above restrict to oper-
ations Aw

exp → Aw
exp.

In topology, � is the operation of “cloning” an entire 2-link. It is not to be confused
with d∆; one dimension down and in just one component, the pictures are:

∆�
⊗

In Lie theory, � is not the co-product ∆: U(Ig) → U(Ig)⊗2. Rather, given two finite
dimensional Lie algebras g1 and g1, � corresponds to the map

� : U(I(g1 ⊕ g2))
⊗S → U(Ig1)

⊗S ⊗ U(Ig2)
⊗S.

We seek to have efficient descriptions of the elements of Aw
exp(↑S) and efficient means of

computing the above operations on such elements.
Let Pw(↑S) denote the set of primitives of Aw(↑S): these are the elements ζ ∈ Aw(↑S)

satisfying �(ζ) = ζ ⊗ 1 + 1 ⊗ ζ . Let FL(S) denote the degree-completed free Lie algebra
with generators S,C2 and let CW(S) denote the degree-completed vector space spanned by
non-empty cyclic words on the alphabet S.C3 In

2-prop:Pnses
[WKO2, Proposition

2-prop:Pnses2-prop:Pnses
3.14] we have shown

that there is a short exact sequence of vector spaces

0 → CW(S) → Pw(↑S) → FL(S)S → 0,

where FL(S)S denotes the set of all functions S → FL(S), and hence Pw(↑S) ≃ FL(S)S ⊕
CW(S) (not canonically!). Often in bi-algebras there is a bijection given by ζ 7→ eζ between
primitive elements ζ and group-like elements eζ . Hence we may expect to be able to represent
elements of Aw

exp(↑S) as formal exponentials of combinations of “trees” (elements of FL(S)S)

and “wheels” (elements of CW(S))5:

5We use the set-theoretic notation “×” rather than the linear-algebraic “⊕” in Equation (
eq:expectationeq:expectation
3) to emphasize

that the two sides of that equation are only expected to be set-theoretically isomorphic. The left-hand-side,
in fact, is not even a linear space in a natural way.

6

DRAFT! See http://drorbn.net/AcademicPensieve/Projects/WKO4/

Aw
exp(↑S) ∼ TW(S) := FL(S)S×CW(S) =

{

(λ; ω) :
λ = {s → λs}s∈S, λs ∈ FL(S)

ω ∈ CW(S)

}

. (3) eq:expectation

We implement Equation (
eq:expectationeq:expectation
3) in a more-or-less straightfoward way in Section

subsec:ATsubsec:AT
2.3 and in a less

straighforward but somewhat stronger way in Section
subsec:KBHsubsec:KBH
2.4.

com:WhyTwo Comment 2.4. Why are there two presentations to elements of Aw
exp?

Answer 1. Because Aw is a bi-algebra in two ways, with the same co-product �. The
first is by using the product of Equation (

eq:TubeProducteq:TubeProduct
1), topologically corresponding to the pairwise

concatanation of one set of |S| knotted tubes in R4 with another set of |S| knotted tubes in
R4 (see

WKO1
[WKO1]). The second comes from

KBH
[BN3]: a tube τ in R4 leads to a {balloon, hoop}

pair, where the hoop is obtained by pushing the longtitude of τ off τ , and the balloon by
capping τ on one end. And given two knots in R4, each consisiting of |S| balloons and |S|
hoops, they can be multiplied by multiplying the hoops in pairs using the “π1 product” and
separately multiplying the balloons in pairs using the “π2 product”.
Answer 2. Roughly speaking, Aw is a combinatorial model of (tensor powers of a completion
of) the universal enveloping algebra U(Ig) of the semi-direct product Ig = g ⋉ g∗, for any
finite-dimensional Lie algebra g, and where g∗ is taken as an Abelian Lie algebra and g acts
on g∗ using the co-adjoint action.

C3In computer talk, generators of FL(S) are always single-character “Lyndon words” (e.g.
Reutenauer:FreeLie
[Re]); in our case

we set xi to be the single-character word “i”, for i = 1, 2. And then α, β, and γ to be the Lie series
x1 + [x1, x2], x2 − [x1, [x1, x2]], and x1 + x2 − 2[x1, x2] (elements of FL are infinite series, in general, but
these examples are finite):

Note that as we requested earlier, our example series are printed to degree 4. Note also that they are printed
using “top bracket” notation, which is easier to read when many brackets are nested.
We then compute [α, β] and verify the Jacobi identity for α, β, and γ:

C3Cyclic words in computer talk:

7

DRAFT! See http://drorbn.net/AcademicPensieve/Projects/WKO4/

By PBW, U(Ig) ≃ U(g) ⊗ S(g∗), and hence group-like elements in U(Ig) can either
be written in “mixed form”, as exponentials of elements of g ⋉ g∗, or in “split form”, as
product of an exponential in S(g∗) with an exponential in U(g). Very roughly speaking,
the “mixed form” corresponds to the “AT presentation” below, and the “split form” to the
“KBH presentation” below.

The reality is a bit more delicate, though. Aw is only a model of the g-invariant part of
U(Ig), and the notions of being group-like in Aw and in U(Ig) do not match. Yet the flavour
remains — in the AT presentation arrow tails (“elements of g∗”) mix with arrow heads (“g”),
while in the KBH presentation heads and tails are kept apart.

com:WhyTwocom:WhyTwo
2.4

8

DRAFT! See http://drorbn.net/AcademicPensieve/Projects/WKO4/

subsec:AT
2.3. The AT presentation El of Aw

exp. In this section we use notation from
2-subsec:ATSpaces
[WKO2,

Section
2-subsec:ATSpaces2-subsec:ATSpaces
3.2] (which when relevant follows

AlekseevTorossian:KashiwaraVergne
[AT]) with little further mention. We also extend

the notation a bit — whereas in
WKO2, AlekseevTorossian:KashiwaraVergne
[WKO2, AT] a set of generators {x1, . . . , xn} is fixed and

is always indexed by the integers {1, . . . , n}, we allow an arbitrary finite set S of indices.
Hence an, tdern, trn (etc.) of

WKO2, AlekseevTorossian:KashiwaraVergne
[WKO2, AT] are replace by aS, tderS, trS (etc.) here.

Given a pair (λ; ω) ∈ TW(S) = FL(S)S × CW(S) = (aS ⊕ tderS)× trS we set

El(λ; ω) := exp(lλ) exp(ιω),

(

“El” for “Exponentiation
after using l”

)

where l : FL(S)S = aS ⊕ tderS → Aw(↑S) is the “lower” Lie embedding6 of trees into Aw(↑S)
(see

2-subsec:ATSpaces
[WKO2, Section

2-subsec:ATSpaces2-subsec:ATSpaces
3.2]), where ι is the obvious inclusion of wheels (= CW(S) = trS)

into Aw(↑S), and where exponentiation is taken using the stacking product (
eq:TubeProducteq:TubeProduct
1) of Aw(↑S).

It follows from the results of
2-subsec:ATSpaces
[WKO2, Section

2-subsec:ATSpaces2-subsec:ATSpaces
3.2] that El : TW(S) → Aw

exp(↑S) is a set-
theoretic bijection. Hence the operations of Definition

def:Operationsdef:Operations
2.2 induce corresponding operations

on TW(S). We list these within the proposition below.

prop:ElOps Proposition 2.5. The bijection El intertwines the following operations with the operations
in Definition

def:Operationsdef:Operations
2.2:

1. If S1 ∩ S2 = ∅ and (λi; ωi) ∈ TW(Si),

El(λ1; ω1) ⊔ El(λ2; ω2) = El(λ1 ⊔ λ2; ω1 + ω2), (4) eq:ElCup

where ⊔ : FL(S1)
S1 × FL(S2)

S2 → FL(S1 ⊔ S2)
S1⊔S2 is the union operation of functions

(or, in computer science language, the concatanation of associative arrays) followed by the
inclusions FL(Si) → FL(S1 ⊔ S2), and ω1 + ω2 is defined using the inclusions CW(Si) →
CW(S1 ⊔ S2).

2. If (λi; ωi) ∈ TW(S),

El(λ1; ω1)El(λ2; ω2) = El(BCHtb(λ1, λ2); ω1 + e∂λ1 (ω2)). (5) eq:ElProduct

Here we employ the BCH formula using the “tangential bracket” [·, ·]tb that FL(S)S in-
herits via the isomorphism FL(S) = aS ⊕ tderS (alternatively, it is the bracket inherited
from the stacking-product-commutator of Aw)

7:

BCHtb(λ1, λ2) = λ1 + λ1 +
[λ1, λ2]tb

2
+

[λ1, [λ1, λ2]tb]tb + [[λ1, λ2]tb, λ2]tb
12

+ . . .

Also, e∂λ1 (ω2) is defined by exponentiating the action of tderS on trS (taking the action
of aS to be trivial).

3. If (λ; ω) ∈ TW(S) and s ∈ S,

El(λ; ω)�dη
s = El((λ\s; ω)�(s → 0)), (6) eq:ElEta

where λ\s denotes the function λ with the element s removed from its domain (in computer
talk, “remove the key s”), and (s → 0) denotes the substitution s = 0, which is defined
on both FL and CW and maps FL(S) → FL(S\s) and CW(S) → CW(S\s).

6We could have equally well used the “upper” Lie embedding u, setting Eu(λ; ω) := exp(ιω) exp(uλ), with
only minor modifications to the formulas that follow.
7[·, ·]tb is a non-trivial modification of the obvious component-wise bracket of FL(S)S =

⊕

S FL(S).
10

DRAFT! See http://drorbn.net/AcademicPensieve/Projects/WKO4/

4. For a single s ∈ S, I don’t know a simple description of the operation dAs in El language
8.

Yet the composition dAS :=
∏

s∈S dA
s is manageable:

El(λ; ω)�dA
S = El(−λ; e∂λ(ω)− j(λ)). (7) eq:ElA

Here j is the Alekseev-Torossian “logarithm of the Jacobian”
AlekseevTorossian:KashiwaraVergne
[AT, Section 5.1] (extended

by 0 on aS): j(λ) =
e∂λ−1
∂λ

(div λ), where div : tderS → trS is the divergence functional and
λ acts on trS as before.

5. For a single s ∈ S, I don’t know a simple description of the operation dSs in El language
8.

Yet the composition dSS :=
∏

s∈S dS
s is manageable:

El(λ; ω)�dS
S = El(−λ�(−1)deg; (e∂λ(ω)− j(λ))�(−1)deg), (8) eq:ElS

where in general hdeg denotes the operations FL → FL and CW → CW which multiply
any degree k element by hk.

6. I don’t know a simple description of the operation dmab
c in El language

8. Yet note that
Equation (

eq:multiplemeq:multiplem
2) implies that “applying dm to all strands” is manageable, being the stacking

product described in (
eq:ElProducteq:ElProduct
5).

7. We have

El(λ; ω)�d∆
a
bc = El((λ\a) ⊔ (b → λa, c → λa)�(a → b+ c); ω�(a → b+ c)), (9) eq:ElDelta

where (a → b+ c) denotes the obvious replacement of the generator a with the sum b+ c.
It represents morphisms FL(S) → FL((S \a) ⊔ {b, c}), FL(S)H → FL((S \a) ⊔ {b, c})H

(for some set H), and CW(S) → CW((S\a) ⊔ {b, c}).
8. We have

El(λ; ω)�dσ
a
b = El(((λ\a) ⊔ (b → λa))�(a → b); ω�(a → b)), (10) eq:ElSigma

where (a → b) denotes the obvious “generator renaming” morphisms FL(S) → FL((S \
a) ⊔ b), FL(S)H → FL((S\a) ⊔ b)H (for some set H), and CW(S) → CW((S\a) ⊔ b).

Proof. Equations (
eq:ElCupeq:ElCup
4), (

eq:ElEtaeq:ElEta
6), (

eq:ElDeltaeq:ElDelta
9), and (

eq:ElSigmaeq:ElSigma
10) are trivial and were stated only to introduce

notation. The tree-level part of Equation (
eq:ElProducteq:ElProduct
5) follows from the fact that l is a morphism of Lie

algebras (see within the proof of
2-prop:Pnses
[WKO2, Proposition

2-prop:Pnses2-prop:Pnses
3.14]). The wheels part of Equation (

eq:ElProducteq:ElProduct
5)

follows from
2-rem:tderontr
[WKO2, Remark

2-rem:tderontr2-rem:tderontr
3.19]. Equation (

eq:ElAeq:ElA
7) follows from the observation that dAS is

the adjoint map ∗ of
2-def:Adjoint
[WKO2, Definition

2-def:Adjoint2-def:Adjoint
3.21] and then from

2-prop:Jandj
[WKO2, Proposition

2-prop:Jandj2-prop:Jandj
3.22].

Equation (
eq:ElSeq:ElS
8) is the easily-established fact that on Aw, dSS = (−1)degdAS. �

8 A not-so-simple description would be to use the language of the KBH presentation of Section
subsec:KBHsubsec:KBH
2.4, convertingfoot:notsimple

back and forth using the results of Section
subsec:Conversionsubsec:Conversion
2.5.

11

DRAFT! See http://drorbn.net/AcademicPensieve/Projects/WKO4/

subsec:KBH
2.4. The KBH presentation Es of Aw

exp. Following
KBH
[BN3], in the “split” presentation Es

of Aw
exp arrow heads are treated separately from arrow tails in diagrams such as the one near

the beginning of Section
subsec:Awsubsec:Aw
2.1. This presentation of Aw

exp is more complicated than the previous
one, yet it is also more powerful, and in some sense, it is made of simpler ingredients. For Es

we first enlarge the collection of spaces {Aw(S)} to a somewhat bigger collection {Aw(H ;T)}
on which a larger class of operations act. The new operations are more “atomic” than the
old ones, in the sense that each of the operations of Definition

def:Operationsdef:Operations
2.2 is a composition of 2-3

of the new operations. The advantage is that the new operations all have reasonably simple
descriptions as operations on the group-like subsets {Aw

exp(H ;T)}, and hence even the few
operations whose description in the El presentation was ommitted in Proposition

prop:ElOpsprop:ElOps
2.5 can be

fully described and computed in the Es presentation.
A sketch of our route is as follows: In Section

sssec:Familysssec:Family
2.4.1, right below, we describe the spaces

{Aw(H ;T)}. In Section
sssec:AHTOperationssssec:AHTOperations
2.4.2 we describe the zoo of operations acting on {Aw(H ;T)}.

Section
sssec:AHTExpsssec:AHTExp
2.4.3 is the tofu of the matter — we describe the operations of the previous section

in terms of spaces {TW(H ;T)} of trees and wheels, whose elements are in a bijection Es

with the group like elements of {Aw(H ;T)}. Finally in Section
sssec:Inclusionsssec:Inclusion
2.4.4 we explain how the

system of spaces {Aw(S)} includes into the system {Aw(H ;T)} and how the operations of
the former are expressed in terms of the latter, concluding the description of Es.

sssec:Family
2.4.1. The family {Aw(H ;T)}. Let H = {h1, h2, . . .} be some finite set of “head labels” and
let T = {t1, t2, . . .} be some finite set of “tail labels” (these sets need not be of the same
cardinality). Let Aw(H ;T) be Aw(↑H⊔T)

9 moded out by the following further relations:

• If an arrow tail lands anywhere on a head strand (∗1
on the right), the whole diagram is zero.

• The CP relation: If an arrow head is the lowest vertex
on a tail strand (∗2 on the right), the whole diagram
is zero. (As on the right, we indicate the bottom ends
of tail strands with bullets “•”).

= 0

hi

= 0∗1

∗2

ti

com:PureForm Comment 2.6. Using these two relations one may show that Aw(↑H⊔T) is isomorphic to the
set of arrow diagrams in which only arrow heads land on the head strands (obvious, by the

first relation) and in which only arrow tails meet the tail strands (use
−−−→
STU2 to slide any

arrow head on a tail strand until it’s near the bottom, then use the second relation; see also

Comment
com:SortedFormcom:SortedForm
2.1), still modulo

−→
AS,

−−−→
IHX,

−−−→
STU 1 and TC.

In topology (see
KBH
[BN3]), head strands correspond to “hoops”, or based knotted circles,

and tail strands correspond to balloons, or based knotted spheres. The two relations
and the isomorphism above are also meaningful

KBH
[BN3].

9 We will often use sets of labels H and T that are not disjoint. The notation “H⊔T ” stands for the union offoot:BruteDisjoint
H and T , made disjoint by brute force; for example, by setting H ⊔T := ({h}×H)∪ ({t}×T), where h and
t are two distinct labels chosen in advance to indicate “heads” and “tails”. In practice we will keep referring
to the images of the elements of H within H ⊔ T as hi rather than (h, hi), and likewise for the ti’s. We will
mostly avoid the confusion that may arise when H∩T 6= ∅ by labeling operations as “head operations” which
will always refer to labels in H →֒ H ⊔ T or as “tail operations”, when referring to labels in T →֒ H ⊔ T .

12

DRAFT! See http://drorbn.net/AcademicPensieve/Projects/WKO4/

In Lie theory head strands represent U(g) and tail strands represent the (right) Verma
module U(Ig)/gU(Ig) ≃ U(g∗) ≃ S(g∗). The evaluation g∗ → 0 induces a surjection

of U(Ig) onto the first of these spaces whose kernel is “any word containing a letter in g∗”,
explaining the first relation above. The second relation is the definition of the Verma module.

sssec:AHTOperations
2.4.2. Operations on {Aw(H ;T)}.

def:AHTOperations Definition 2.7. Just as in Definition
def:Operationsdef:Operations
2.2, there are several operations that are defined on

Aw(H ;T). In brief, these are:

1. A union operation ⊔ : Aw(H1;T1) ⊗ Aw(H2;T2) → Aw(H1 ⊔ H2;T1 ⊔ T2), defined when
H1 ∩H2 = T1 ∩ T2 = ∅, with obvious topological (compare with “∗” of

KBH-fig:ConnectedSum
[BN3, Figure

KBH-fig:ConnectedKBH-fig:Connected
5])

and Lie theoretic meanings.
2. A “stacking” product # can be defined on Aw(H ;T) by concatenating all pairs of equally-

labeled head strands and then merging all pairs of equally-labeled tail strands in a pair of
diagrams D1, D2 ∈ Aw(H ;T). The “merging” of tail strands is described in more detail
as the operation tm below. In fact, it may be better to define # using a formula similar
to Equation (

eq:multiplemeq:multiplem
2) and the operations hm, tm, hσ, and tσ defined below:

D1#D2 =

(

D1 ⊔

(

D2�
∏

x∈H

hσx
x̄�
∏

u∈T

tσt
t̄

))

�
∏

x∈H

hmxx̄
x �

∏

u∈T

tmuū
u . (11) eq:AHTStacking

Warning. Restricted to Aw(S;S) the product # does not agree with the stacking prod-
uct · of Aw(↑S).

In topology, # is the concatenation of hoops followed by the merging of balloons;
this is not the same as the concatenation of knotted tubes. In Lie theory, #

corresponds to the componentwise product of U(g)⊗H ⊗ S(g∗)⊗T . Even when H and T
are both singletons, this is not the same as the product of U(Ig), even though linearly
U(Ig) ≃ U(g)⊗ S(g∗).

3. If x ∈ H and u ∈ T , the operations hηx and tηu drop the head-strand x or the tail-strand
u similarly to the operation ηs of Definition

def:Operationsdef:Operations
2.2.

4. hAx reverses the head-strand x while multiplying by a (−1) factor for every arrow head
on x. tAu is the identity.

5. tSx = hAx while tSu multiplies by a factor of (−1) for every arrow tail on u (by TC,
there’s no need to reverse u).

6. The operation hmxy
z is defined similarly to mab

c of Definition
def:Operationsdef:Operations
2.2. Likewise for tmuv

w , except
in this case, the tail-strands u and v must first be cleared of all arrow-heads using the
process of Comment

com:PureFormcom:PureForm
2.6. Once u and v carry only arrow-tails, all these tail can be put on

a new tail-strand w in some arbitrary order (which doesn’t matter, by TC). Note that
tmuv

w = tmvu
w , so tm is “meta-commutative”.

In topology, tmuv
w is the “merging of balloons” operation of

KBH-subsec:MMAOperations
[BN3, Section

KBH-subsec:MMAOperationsKBH-subsec:MMAOperations
3.1], which

in itself is analogues to the (commutative) multiplication of π2.
In Lie theory, tmuv

w is the product of S(g∗). Note that tail strands more closely
represent the Verma module U(Ig)/gU(Ig) whose isomorphism with S(g∗) involves

“sliding all g-letters in a U(Ig)-word to the left and then canceling them”. This is anal-
ogoues to the process of cancelling arrow-heads which is a pre-requisite to the deifnition
of tmuv

w .

7. h∆x
yz and t∆u

vw are defined similarly to ∆a
bc.
13

DRAFT! See http://drorbn.net/AcademicPensieve/Projects/WKO4/

8. hσx
y and tσu

v are defined similarly to σa
b .

9. New! Given a tail u ∈ T , a “new” tail label v 6∈ T \u and a head x ∈ H the operation
thmux

v : Aw(H ;T) → Aw(H \x; (T \u) ⊔ {v}) is the obvious “tail-strand head-strand
concatenation” — similarly to mab

c , concatenate the strand u to the strand x putting u
before x, and call the resulting “new” strand v. Note that for this to be well defined, v
must be a tail strand.10

In practice, thmux
v is never used on its own, but the combination h∆x

xx′�thmux′

u (where
x′ is a temporary label) is very useful. Hence we set thaux : Aw(H ;T) → Aw(H ;T) (“tail
by head action on u by x”) to be that combination. In words, this is “double the strand
x and put one of the copies on top of u”.11

In topology, tha is the action of hoops on balloons as in
KBH-subsec:MMAOperations
[BN3, Section

KBH-subsec:MMAOperatKBH-subsec:MMAOperat
3.1],

which is similar to the action of π1 on π2. In Lie theory, it is the right action of
U(g) on the Verma module U(Ig)/gU(Ig), or better, the action of U(g) on S(g∗) induced
from the co-adjoint action of g on g∗.

Exercise 2.8. In the cases when we did not state the topological or Lie theoretical
meaning of an operation in Definition

def:AHTOperationsdef:AHTOperations
2.7, find what it is.

sssec:AHTExp
2.4.3. Group-like elements in {Aw(H ;T)}. For any fixed finite sets H and T there is a co-
product � : Aw(H ;T) ⊗ Aw(H ;T) defined just as in the case of Aw(↑S) (Definition

def:GroupLikedef:GroupLike
2.3),

and along with the product # (and obvious units and co-units), Aw(H ;T) is a graded con-
nected co-commutative bi-algebra. Hence it makes sense to speak of the group-like elements
Aw

exp(H ;T) within Aw(H ;T), and they are all #-exponentials of primitives in Aw(H ;T).
The primitives Pw(H ;T) in Aw(H ;T) are connected diagrams and hence they are trees and
wheels. As in Comment

com:PureFormcom:PureForm
2.6, the trees must have their roots on head strands and their

leafs on tail strands, and the wheels must have all their “legs” on tail strands. As tails
commute, we may think of the trees as abstract trees with leafs labeled by labels in T and
roots in H , and the wheels are abstract cyclic words with letters in T . Hence canonically
Pw(H ;T) ≃ FL(T)H ⊕ CW(T) and hence there is a bijection

Es : TW(H ;T) := FL(T)H ⊕ CW(T)
∼

−→ Aw
exp(H ;T) (12) eq:EsHT

defined by
(λ : H → FL(T); ω ∈ FL(T)) 7→ exp# (es(λ;ω)) , (13) eq:esHT

where es(λ;ω) is the sum over x ∈ H of planting λx with its root on strand x and its leafs
on the strands in T so that the labels match but at an arbitrary order on any T strand, plus
the result of planting ω on just the T strands so that the labels match but at an arbitrary
order on any T strand.

Together, Equations (
eq:EsHTeq:EsHT
12) and (

eq:esHTeq:esHT
13) make the Es presentation of Aw

exp(H ;T). It is easy to
verify that the operations in Definition

def:AHTOperationsdef:AHTOperations
2.7 intertwine � and hence map group-like elements to

group-like elements and hence they induce operations on TW(H ;T). These are summarized
within the proposition below.

10Note also that the analogeous operation htmxu
v “put x before u to get a tail v” is 0 and hence we can safely

ignore it, and that thmxu
y and htmxu

y , defined in the same way as thmux
v and htmxu

v except to produce a
head strand y, are not well defined because they do not respect the CP relation.
11Note that thmux

v = thaux�hηx�tσu
v so we lose no generality by considering thaux instead of thmux

v .
14

DRAFT! See http://drorbn.net/AcademicPensieve/Projects/WKO4/

prop:EsOps Proposition 2.9. In the KBH presentation Es the operations of Definition
def:AHTOperationsdef:AHTOperations
2.7 act as fol-

lows:12:

1. Es(λ1; ω1) ⊔ Es(λ2; ω2) = Es(λ1 ⊔ λ2; ω1 + ω2) (14)eq:EsCup
2. Es(λ1; ω1)#Es(λ2; ω2) = Es ((x → BCH(λ1x, λ2x))x∈H ; ω1 + ω2) (15)eq:EsProduct
3. Es(λ; ω)�hη

x = Es(λ\x; ω) (16)eq:EshEta
Es(λ; ω)�tη

u = Es(λ�(u → 0); ω�(u → 0)) (17)eq:EstEta
4. Es(λ; ω)�hA

x = Es((λ\x) ⊔ (x → −λx); ω) (18)eq:EshA
tAu = I (19)eq:EstA

5. hSx = hAx, (20)eq:EshS
Es(λ; ω)�tS

u = Es(λ�(u → −u); ω�(u → −u)) (21)eq:EstS
6. Es(λ; ω)�hm

xy
z = Es((λ\{x, y}) ⊔ (z → BCH(λx, λy)); ω) (22)eq:Eshm

Es(λ; ω)�tm
uv
w = Es(λ�(u, v → w); ω�(u, v → w)) (23)eq:Estm

7. Es(λ; ω)�d∆
x
yz = Es((λ\x) ⊔ (y → λx, z → λx); ω) (24)eq:EshDelta

Es(λ; ω)�t∆
u
vw = Es(λ�(u → v + w); ω�(u → v + w)) (25)eq:EstDelta

8. Es(λ; ω)�dσ
x
y = Es((λ\x) ⊔ (y → λx); ω) (26)eq:EshSigma

Es(λ; ω)�tσ
u
v = Es(λ�(u → v); ω�(u → v)) (27)eq:EstSigma

Something somewhere’s got to have some substance, and in our case, that’s thaux. For u ∈ T
and γ ∈ FL(T) the operation RCγ

u : FL(T) → : FL(T) and the functional Ju : FL(T) →
CW(T) were defined in

KBH
[BN3] and are reviewed in the two definition below. With these,

9. Es(λ; ω)�tha
ux = Es

(

λ�RCλx

u ; (ω + Ju(λx))�RCλx

u

)

. (28)eq:Estha

def:RC Definition 2.10. (Compare
KBH-subsec:FLSuccess
[BN3, Section

KBH-subsec:FLSuccessKBH-subsec:FLSuccess
4.2]) Given u ∈ T and γ ∈ FL(T) let C−γ

u

denote the automorphism of FL(T) defined by mapping the generator u to its “conjugate”
e−γueγ = e− ad γ(u). Let RCγ

u be the inverse of C−γ
u (which is not Cγ

u).

u

u v

u

u v

+
u

u v

γ

divu

def:J Definition 2.11. (Compare
KBH-subsec:divJ
[BN3, Section

KBH-subsec:divJKBH-subsec:divJ
5.1])

Given u ∈ T and let divu : FL(T) → CW(T) be
the functional defined by the picture on the right
(more details in

KBH
[BN3]). Given also γ ∈ FL(T),

set

Ju(γ) :=

∫ 1

0

ds divu(γ � RCsγ
u) � C−sγ

u .

Proof of Proposition
prop:EsOpsprop:EsOps
2.9. The first 8 assertions (14 operations) are very easy. The main

challenge to the reader should be to gather her concentration for the 14-times repeatitive
task of unwrapping definitions. If you are ready to cut corners, only go over (

eq:EsCupeq:EsCup
14), (

eq:Eshmeq:Eshm
22), (

eq:Estmeq:Estm
23),

(
eq:EshDeltaeq:EshDelta
24), and (

eq:EstDeltaeq:EstDelta
25). Let us turn to the proof of the last assertion, Equation (

eq:Esthaeq:Estha
28). That proof is in

fact in
KBH
[BN3], or at least can be assembled from pieces already in

KBH
[BN3]. Yet the assembly

would be a bit delicate, and hence a proof is reproduced below which refers back to
KBH
[BN3]

only at one technical point.
By inspecting the definition of thaux, it is clear that there is some assignment γ 7→ Rγ

u

that assigns an operator Rγ
u : FL(T) → FL(T) to every γ ∈ FL(T) and that there is some

functional Ku : FL(T) → CW(T), for which a version of Equation (
eq:Esthaeq:Estha
28) holds:

12Here we no longer state conditions such as H1 ∩H2 = ∅, u ∈ T , (λ; ω) ∈ TW(H ;T). They are the same
as in Definition

def:AHTOperationsdef:AHTOperations
2.7, and more impotantly, they are “what makes sense”.

15

DRAFT! See http://drorbn.net/AcademicPensieve/Projects/WKO4/

Es(λ; ω)�tha
ux = Es

(

λ�Rλx
u ; (ω +Ku(λx))�R

λx
u

)

(29) eq:Esthap

Indeed, thaux acts on Es(λ; ω) by placing a copy of exp(λx) at the top of the tail strand u,
and then re-writing the result without having any heads on strand u so as to invert Es back
again. The re-writing is done by sliding the heads of exp(λx) down to the bottom of strand
u, where they cancel by CP . Every time a head slides past a tail we get a contribution

from
−−−→
STU2. Sometimes a head of a λx will slide against a tail of another λx, whose head

will have to slide down too, leading to a rather complicated iterative process. Nevertheless,
these contributions are the same for every tail on strand u, namely for every occurence of
the variable u in FL(T)H and/or in CW(T). This explains the terms λ�Rλx

u and ω�Rλx
u in

Equation (
eq:Esthapeq:Esthap
29). We note that the degree 0 part of the operator Rλx

u is the identity, and hence
it is invertible.

But yet another type of term arises in the process — sometimes a head of some tree

will slide against a tail of its own, and then the contribution arising from
−−−→
STU2 will be a

wheel. Hence there is an additional contribution to the output, some Lu(λx) which clearly
can depend only on u and λx. Using the invertibility of Rλx

u to write Lu(λx) = Ku(λx)�R
λx
u

we completely reproduce Equation (
eq:Esthapeq:Esthap
29).

We now need to show that Rγ
u and Ku(γ) are RCγ

u and Ju(γ) of Definitions
def:RCdef:RC
2.10 and

def:Jdef:J
2.11.

Tracing again through the discussion in the previous two paragraphs, we see that at any fixed
degree, Rγ

u and Ku(γ) depend polynomially on the coefficients of γ, and hence it is legitimate
to study their variation with respect to γ. It is also easy to verify that R0

u = RC0
u = I and

that Ku(0) = Ju(0) = 0, and hence it is enough to show that, with an indeterminate scalar
τ ,

d

dτ
Rτγ

u =
d

dτ
RCτγ

u and
d

dτ
Ku(τγ) =

d

dτ
Ju(τγ). (30) eq:DerEqns

Let us compute the left-hand-sides of the above equations. If τ is an infinitesimal (so
τ 2 = 0), or more precisely, computing the above left-hand-sides at τ = 0, we can re-trace
the process described in the two paragraphs following Equation (

eq:Esthapeq:Esthap
29) keeping in mind that

with λx = τγ the
−−−→
STU2 relation can only by applied once (or else terms proportional to τ 2

will arise). The result is

d

dτ
Rτγ

u

∣

∣

∣

∣

τ=0

= adγu and
d

dτ
Ku(τγ)

∣

∣

∣

∣

τ=0

= divu(γ), (31) eq:DersAtZero

where adγ
u : FL(T) → FL(T) is the derivation which maps the generator u of FL(T) to [γ, u]

and annihilates all other generators of FL(T) (compare
KBH-def:adu
[BN3, Definition

KBH-def:aduKBH-def:adu
10.5]) and where

divu(γ) is the same as in Definition
def:Jdef:J
2.11.

Moving on to general τ , we note that the operations hm and tha satisfy

hmxy
z �thauz = thaux�thauy�hmxy

z (32) eq:haction

(stitching strands x and y and then stitching a copy of the result to u is the same as stitching
a copy of x to u, then a copy of y, and then stitching x to y; compare

KBH-eq:haction
[BN3, Equation (

KBH-eq:hactionKBH-eq:haction
6)]).

Applying the operators on the two sides of Equation (
eq:hactioneq:haction
32) to Es(λ; ω) (assuming H and T

are such that it makes sense), then expanding using (
eq:Eshmeq:Eshm
22) and (

eq:Esthapeq:Esthap
29), and then ignoring the

wheels in the resulting equality, we find that Ru satisfies

RBCH(λx,λy)
u = Rλx

u �Rλy�R
λx
u

u (33) eq:Rh
16

DRAFT! See http://drorbn.net/AcademicPensieve/Projects/WKO4/

(compare
KBH-eq:RCh
[BN3, Equation (

KBH-eq:RChKBH-eq:RCh
16)]). Similarly, looking only at the wheel part of (

eq:hactioneq:haction
32) we get

Ku(BCH(λx, λy))�R
BCH(λx,λy)
u = Ku(λx)�R

λx
u �Rλy�R

λx
u

u +Ku(λy�R
λx
u)�Rλy�R

λx
u

u ,

which, composing on the right with R
BCH(λx,λy)
u and using (

eq:Rheq:Rh
33), is equivalent to

Ku(BCH(λx, λy)) = Ku(λx)�R
λx

u +Ku(λy�R
λx

u)�C−λx

u (34) eq:Kh

(compare
KBH-eq:JhProperty
[BN3, Equation (

KBH-eq:JhPropertyKBH-eq:JhProperty
19)]).

Equations (
eq:Rheq:Rh
33) and (

eq:Kheq:Kh
34) hold for any λ, and hence for any λx and λy. Specializing to

λx = τγ and λy = ǫγ, where ǫ is some new indeterminate scalar, and using the fact that
BCH(τγ, ǫγ) = (τ + ǫ)γ, Equations (

eq:Rheq:Rh
33) and (

eq:Kheq:Kh
34) become

R(τ+ǫ)γ
u = Rτγ

u �Rǫγ�Rτγ
u

u and Ku((τ + ǫ)γ) = Ku(τγ)�R
τγ
u +Ku(ǫγ�R

τγ
u)�C−τγ

u .

Now differetiating with respect to ǫ at ǫ = 0 and using Equation (
eq:DersAtZeroeq:DersAtZero
31) with τ replaced with

ǫ, we get

d

dτ
Rτγ

u = Rτγ
u �adγ�Rτγ

u
u and

d

dτ
Ku(τγ) = divu(γ�R

τγ
u)�C−τγ

u .

The first of these equations is the same equation that is satisfied by RCu (see
KBH-lem:dC
[BN3, Lemma

KBH-lem:dCKBH-lem:dC
10.7], with δγ proportional to γ), and hence Ru = RCu. By a simple change of variables,
Ju(τγ) =

∫ τ

0
dt divu(γ � RCtγ

u)�C−tγ
u , and hence d

dτ
Ju(τγ) = divu(γ�RCτγ

u)�C−τγ
u (compare

with the formula for the full differential of J ,
KBH-prop:dJ
[BN3, Proposition

KBH-prop:dJKBH-prop:dJ
10.10]). Comparing with

the above formula for the derivative of Ku, we find that Ku = Ju. �
sssec:Inclusion

2.4.4. The inclusion {Aw(↑S)} →֒ {Aw(H ;T)}. The following definition and proposition
imply that there is no loss in studying the spaces Aw(H ;T) rather than the spaces Aw(↑S).

Definition 2.12. Let δ : Aw(↑S) → Aw(S;S) be the composition of the “double every
strand” map

∏

s∈S ∆
s
hs,ts : A

w(↑S) → Aw(↑hS⊔tS) with the projectionAw(↑hS⊔tS) → Aw(S;S)
(as an exception to the rule of Footnote

foot:BruteDisjointfoot:BruteDisjoint
9 we temporarily highlight the distinction between

head and tail labels by afixing them with the prefixes h and t).

Proposition 2.13. δ is a vector space isomorphism13. The inverse of δ on D ∈ Aw(S;S)
is given by the process

(1) Write D with only arrow heads on the head strands and only arrow tails on the tail
strands. By Comment

com:PureFormcom:PureForm
2.6 this produces a well-defined element D′ of Aw(↑hS⊔tS).

(2) Concatenate all the head-tail pairs of strands in D′ by putting each head ahead of its
corresponding tail: δ−1D = D′�

∏

s m
hs,ts
s .

Proof. δ−1�δ = I by inspection, and δ�δ−1 is clearly the identity on diagrams sorted to
have heads ahead of tails as in Comment

com:SortedFormcom:SortedForm
2.1. �

In topology, δ agrees with the δ of
KBH-subsec:delta
[BN3, Section

KBH-subsec:deltaKBH-subsec:delta
2.2]. In Lie theory, it agrees with

the linear (non-multiplicative) isomorphism U(Ig) ≃ U(g)⊗S(g∗) and with similar
isomorphisms considered by Etingof and Kazhdan within their work on the quantization of
Lie bialgebras

EtingofKazhdan:BialgebrasI
[EK] (albeit only when the Lie bialgebras in question are cocommutative).

The next proposition shows how the operations of defined on the Aw(↑S)-spaces in Defi-
nition

def:Operationsdef:Operations
2.2 can be written in terms of the “head and tail” operations of Definition

def:AHTOperationsdef:AHTOperations
2.7, thus

completing the description of the Es presentation.

13See also Discussions
disc:coalgdisc:coalg
2.15 and

disc:onliedisc:onlie
2.16.

17

DRAFT! See http://drorbn.net/AcademicPensieve/Projects/WKO4/

prop:dinht Proposition 2.14. 1. If S1 and S2 are disjoint and D1 ∈ Aw(↑S1
) and D2 ∈ Aw(↑S2

), then
δ(D1 ⊔D2) = δ(D1) ⊔ δ(D2).

2. Let D1, D2 ∈ Aw(↑S). Then δ(D1D2) can be written in terms of δ(D1) and δ(D2) using
its description in terms of ⊔, dσ, and dm in Equation (

eq:multiplemeq:multiplem
2) and using the formulas for ⊔,

dσ, and dm that appear above and below.

3. dηs�δ = δ�hηs�tηs.
it:HTdA4. dAs�δ = δ�hAs�tAs�thass.
it:HTdS5. dSs�δ = δ�hSs�tSs�thass.

it:HTdm6. dmab
c �δ = δ�thaab�hmab

c �tmab
c .

7. d∆a
bc�δ = δ�h∆a

bc�t∆
a
bc.

8. dσa
b�δ = δ�hσa

b�tσ
a
b .

Proof. The only difficulty is with items
it:HTdAit:HTdA
4–

it:HTdmit:HTdm
6. Item

it:HTdAit:HTdA
4 is easier to understand in the

form δ−1�dAs = hAs�tAs�thass�δ−1. Indeed, δ−1 plants heads ahead of tails on strand s.
Applying dAs reverses that strand (and adds some signs). This reversal can be achieved by
reversing the head part (with signs), then the tail part (with signs), and then by swapping the
two parts across each other. The first reversal is hAs, the second is tAs, and the swap is thass

followed by δ−1. Item
it:HTdSit:HTdS
5 is proven in exactly the same way, and item

it:HTdmit:HTdm
6 is proven in a similar

way, where the right hand side traces the schematics (ha ta hb tb)
tha
−−→ (ha hb ta tb)

hm�tm
−−−−→

((ha hb)(ta tb)). �

disc:coalg Discussion 2.15. It is easy to verify that δ : Aw(↑S) → Aw(S; S) intertwines the co-algebra
structures on its domain and its range, and hence it restricts to an isomorphism δ : Aw

exp(↑S
) → Aw

exp(S; S). Therefore Es�δ
−1 is a bijection between TW(S) and Aw

exp(↑S). Proposi-
tion

prop:dinhtprop:dinht
2.14 now tells us how to write all the “d” operations of Definition

def:Operationsdef:Operations
2.2 as “h” and “t”

operations, and Proposition
prop:EsOpsprop:EsOps
2.9 tells us how to write these as operations on TW(S). Overall

Es�δ
−1 is a complete presentation of Aw

exp(↑S).

disc:onlie Discussion 2.16. For use in the next section, note that both Aw(↑S) and A(S; S) are asso-
ciative algebras (the former using the stacking product of Equation (

eq:TubeProducteq:TubeProduct
1) and the latter using

that of Equation (
eq:AHTStackingeq:AHTStacking
11)), yet δ is not multiplicative and hence it does not restrict to a Lie

morphism on primitives. Instead, on primitives (λ1;ω1), (λ2;ω2) ∈ TW(S) we have

δ[lλ1+ιω1, lλ2+ιω2] = [δ(lλ1+ιω1), δ(lλ2+ιω2)]+es(∂λ1
λ2; ∂λ1

ω2)−es(∂λ2
λ1; ∂λ2

ω1), (35) eq:BracketComparissons

where ∂λ denotes the tangential derivation in tderS corresponding to λ under the identifica-
tion FL(S)S ≃ aS ⊕ tderS. Note that as in

AlekseevTorossian:KashiwaraVergne
[AT], these derivations also act on CW(S).

Proof of Equation (
eq:BracketComparissonseq:BracketComparissons
35).

MORE
subsec:Conversion

2.5. The conversion between the AT and the KBH presentations. We now have
two presentations for elements of Aw

exp, and we wish to be able to convert between the two.

In other words, given λ = {s → λs}s∈S ∈ FL(S)S and ω ∈ CW(S), we wish to find λ′ and
ω′ such that El(λ; ω) = Es(λ

′; ω′)�δ−1.
Given (λ; ω) as above and a scalar t, let Γ(λ, t) = {s → γs(t)} ∈ FL(S)S be the unique

solution of the system of ordinary differential equations

∀s ∈ S,
dγs(t)

dt
= γs(t)�e

−t∂λ�
ad γs(t)

ead γs(t) − 1
; γs(0) = 0. (36) eq:Gamma

Let Γ(λ) := Γ(λ, 1).
18

DRAFT! See http://drorbn.net/AcademicPensieve/Projects/WKO4/

Theorem 2.17. ω′ = Γ(λ) and ω′ = ω. Namely,

El(λ; ω) = Es(Γ(λ); ω)�δ
−1 (37) eq:convertion

Proof. El and Es both plant wheels at the top, and as tails commute, they do so in the
same manner. So ω′ = ω and we only need to show Equation (

eq:convertioneq:convertion
37) at tree level (meaning,

modulo wheels). We will show that for every scalar t,

exp(l(tλ)) = exp#(es(Γ(λ, t)))�δ
−1; (38) eq:treelevel

the desired result is the specialization of Equation (
eq:treeleveleq:treelevel
38) to t = 1. It is clear that Equation (

eq:treeleveleq:treelevel
38)

holds for some unique Γ0 = {s → γ0s(t)}, that γ0s(0) = 0, and that each coefficient of
each γ0s(t) depends polynomialy on t, and hence it is enough to show that Γ0 satisfies the
differential equation in (

eq:Gammaeq:Gamma
36).

MORE.
MORE.

19

DRAFT! See http://drorbn.net/AcademicPensieve/Projects/WKO4/

References

AlekseevTorossian:KashiwaraVergne [AT] A. Alekseev and C. Torossian, The Kashiwara-Vergne conjecture and Drinfeld’s associators, Annals
of Mathematics 175 (2012) 415–463, arXiv:0802.4300.

itSolutions [AET] A. Alekseev, B. Enriquez, and C. Torossian, Drinfeld’s associators, braid groups and an explicit

solution of the Kashiwara-Vergne equations, Publications Mathématiques de L’IHÉS, 112-1 (2010)
143–189, arXiv:0903.4067.

Bar-Natan:OnVassiliev [BN1] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423–472.
Bar-Natan:NAT [BN2] D. Bar-Natan, Non-associative tangles, in Geometric topology (proceedings of the Georgia interna-

tional topology conference), (W. H. Kazez, ed.), 139–183, Amer. Math. Soc. and International Press,
Providence, 1997.

KBH [BN3] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant,

BF Theory, and an Ultimate Alexander Invariant, paper and related files at
http://www.math.toronto.edu/~drorbn/papers/KBH/. The arXiv:1308.1721 edition may be
older.

Drinfeld:QuasiHopf [Dr1] V. G. Drinfel’d, Quasi-Hopf Algebras, Leningrad Math. J. 1 (1990) 1419–1457.
Drinfeld:GalQQ [Dr2] V. G. Drinfel’d, On Quasitriangular Quasi-Hopf Algebras and a Group Closely Connected with

Gal(Q̄/Q), Leningrad Math. J. 2 (1991) 829–860.
EtingofKazhdan:BialgebrasI [EK] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematica, New Series 2

(1996) 1–41, arXiv:q-alg/9506005.
KashiwaraVergne:Conjecture [KV] M. Kashiwara and M. Vergne, The Campbell-Hausdorff Formula and Invariant Hyperfunctions, In-

vent. Math. 47 (1978) 249–272.
Reutenauer:FreeLie [Re] C. Reutenauer, Free Lie Algebras, Clarendon Press, Oxford 1993.

WKO1 [WKO1] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects I: W-Knots and the

Alexander Polynomial, http://drorbn.net/AcademicPensieve/Projects/WKO1

WKO2 [WKO2] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects II: Tangles and the

Kashiwara-Vergne Problem, http://drorbn.net/AcademicPensieve/Projects/WKO2

WKO3 [WKO3] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects III: Double Tree Con-

structio, http://drorbn.net/AcademicPensieve/Projects/WKO3

WKO4 [WKO4] D. Bar-Natan, Finite Type Invariants of W-Knotted Objects III: Some Computations (self-
reference), paper and related files at http://drorbn.net/AcademicPensieve/Projects/WKO4. The
arXiv:????.???? edition may be older.

Wolfram:Mathematica [Wo] Wolfram Mathematica 9 Documentation Center, http://reference.wolfram.com.

20

DRAFT! See http://drorbn.net/AcademicPensieve/Projects/WKO4/

http://front.math.ucdavis.edu/0802.4300
http://front.math.ucdavis.edu/0903.4067
http://www.math.toronto.edu/~drorbn/LOP.html#OnVassiliev
http://www.math.toronto.edu/~drorbn/LOP.html#NAT
http://www.math.toronto.edu/~drorbn/papers/KBH/
http://front.math.ucdavis.edu/1308.1721
http://front.math.ucdavis.edu/q-alg/9506005
http://www.springerlink.com/content/v73014gx14084624/
http://drorbn.net/AcademicPensieve/Projects/WKO1
http://drorbn.net/AcademicPensieve/Projects/WKO2
http://drorbn.net/AcademicPensieve/Projects/WKO3
http://drorbn.net/AcademicPensieve/Projects/WKO4
http://front.math.ucdavis.edu/????.????
http://reference.wolfram.com

Everything below is to be blanked out before the completion of this paper. sectionIn-
troduction This paper being a third in a series

WKO1,WKO2
[WKO1, WKO2], as well as a continuation

of
AlekseevTorossian:KashiwaraVergne, AlekseevEnriquezTorossian:ExplicitSolutions
[AT, AET] and of

KBH
[BN3], we will forgo a description of the context and the motivations

and forgo the precise definitions, and instead jump right into the heart of the matter —
the equations we seek to solve, and the spaces in which they are written. Our fundamental
quantities are

• R = exp(S), the Zw-value of a crossing, a member of the space Aw(↑2) defined
in

WKO1
[WKO1] and reviewed in Section

subsec:Spacessubsec:Spaces
2.5 below.

• V , the Zw-value of a vertex, a member of Aw(↑3).
• C ∈ Aw(Z), the Zw-value of a cap.
• A Drinfel’d associator Φ and a braiding element for u-braids Θ = exp(1

2
\).

subsectionThe Equationssubsec:Equations

• Reidemeister 4, R4 R23R13V = V R12,3 (39)

subsectionThe Spacessubsec:Spaces

Department of Mathematics, University of Toronto, Toronto Ontario M5S 2E4, Canada

E-mail address : drorbn@math.toronto.edu
URL: http://www.math.toronto.edu/~drorbn

21

DRAFT! See http://drorbn.net/AcademicPensieve/Projects/WKO4/

	1. Introduction
	2. Group-like elements in Aw
	2.1. A brief review of Aw
	2.3. The AT presentation El of Awexp
	2.4. The KBH presentation Es of Awexp
	2.5. The conversion between the AT and the KBH presentations.

	References

