
FINITE TYPE INVARIANTS OF W-KNOTTED OBJECTS II: TANGLES,

FOAMS AND THE KASHIWARA-VERGNE PROBLEM

DROR BAR-NATAN AND ZSUZSANNA DANCSO

Abstract. This is the second in a series of papers dedicated to studying w-knots, and
more generally, w-knotted objects (w-braids, w-tangles, etc.). These are classes of knotted
objects that are wider but weaker than their “usual” counterparts. To get (say) w-knots
from usual knots (or u-knots), one has to allow non-planar “virtual” knot diagrams, hence
enlarging the the base set of knots. But then one imposes a new relation beyond the ordinary
collection of Reidemeister moves, called the “overcrossings commute” relation, making w-
knotted objects a bit weaker once again. Satoh [Sa] studied several classes of w-knotted
objects (under the name “weakly-virtual”) and has shown them to be closely related to
certain classes of knotted surfaces in R4.

In this article we study finite type invariants of w-tangles and w-trivalent graphs (also
referred to as w-tangled foams). Much as the spaces A of chord diagrams for ordinary
knotted objects are related to metrized Lie algebras, the spaces Aw of “arrow diagrams”
for w-knotted objects are related to not-necessarily-metrized Lie algebras. Many questions
concerning w-knotted objects turn out to be equivalent to questions about Lie algebras.
Most notably we find that a homomorphic universal finite type invariant of w-foams is
essentially the same as a solution of the Kashiwara-Vergne [KV] conjecture and much of
the Alekseev-Torossian [AT] work on Drinfel’d associators and Kashiwara-Vergne can be
re-interpreted as a study of w-foams.
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1. Introduction

This is the second in a series of papers on w-knotted objects. In the first paper [WKO1],
we took a classical approach to studying finite type invariants of w-braids and w-knots
and proved that the universal finite type invariant for w-knots is essentially the Alexander
polynomial. In this paper we will study finite type invariants of w-tangles and w-tangled
foams from a more algebraic point of view, and prove that “homomorphic” universal finite
type invariants of w-tangled foams are in one-to-one correspondence with solutions to the
(Alekseev-Torossian version of) the Kashiwara-Vergne problem in Lie theory. Mathemati-
cally, this paper does not depend on the results of [WKO1] in any significant way, and the
reader familiar with the theory of finite type invariants will have no difficulty reading this
paper without having read [WKO1]. However, since this paper starts with an abstract re-
phrasing of the well-known finite type story in terms of general algebraic structures, readers
who need an introduction to finite type invariants may find it more pleasant to read [WKO1]
first (especially Sections 1, 2 and 3.1–3.5).

1.1. Motivation and hopes. This article and its siblings [WKO1] and [WKO3] are efforts
towards a larger goal. Namely, we believe many of the difficult algebraic equations in math-
ematics, especially those that are written in graded spaces, more especially those that are
related in one way or another to quantum groups [Dr1], and to the work of Etingof and
Kazhdan [EK], can be understood, and indeed would appear more natural, in terms of finite
type invariants of various topological objects.

This work was inspired by Alekseev and Torossian’s results [AT] on Drinfel’d associators
and the Kashiwara-Vergne conjecture, both of which fall into the aforementioned class of
“difficult equations in graded spaces”. The Kashiwara-Vergne conjecture — proposed in 1978
[KV] and proven in 2006 by Alekseev and Meinrenken [AT] — has strong implications in Lie
theory and harmonic analysis, and is a cousin of the Duflo isomorphism, which was shown
to be knot-theoretic in [BLT]. We also know that Drinfel’d’s theory of associators [Dr2] can
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be interpreted as a theory of well-behaved universal finite type invariants of parenthesized
tangles1 [LM, BN2], or of knotted trivalent graphs [Da].

In Section 4 we will re-interpret the Kashiwara-Vergne conjecture as the problem of finding
a “homomorphic” universal finite type invariant of a class of w-knotted trivalent graphs (more
accurately named w-tangled foams). This result fits into a bigger picture incorporating
usual, virtual and w-knotted objects and their theories of finite type invariants, connected
by the inclusion map from usual to virtual, and the projection from virtual to w-knotted
objects. In a sense that will be made precise in Section 2, usual and w-knotted objects with
this mapping form a unified algebraic structure, and the mysterious relationship between
Drinfel’d associators and the Kashiwara-Vergne conjecture is explained as a theory of finite
type invariants for this larger structure. This will be the topic of Section 4.6.

We are optimistic that this paper is a step towards re-interpreting the work of Etingof and
Kazhdan [EK] on quantization of Lie bi-algebras as a construction of a well-behaved universal
finite type invariant of virtual knots [Ka] or of a similar class of virtually knotted objects.
However, w-knotted objects are quite interesting in their own right, both topologically and
algebraically: they are related to combinatorial group theory, to groups of movies of flying
rings in R3, and more generally, to certain classes of knotted surfaces in R4. The references
include [BH, FRR, Gol, Mc, Sa].

In [WKO1] we studied the universal finite type invariants of w-braids and w-knots, the
latter of which turns out to be essentially the Alexander polynomial. A more thorough
introduction about our “hopes and dreams” and the u-v-w big picture can also be found in
[WKO1].

1.2. A brief overview and large-scale explanation. We are going to start by developing
the algebraic ingredients of the paper in Section 2. The general notion of an algebraic
structure lets us treat spaces of a topological or diagrammatic nature in a unified algebraic
manner. All of braids, w-braids, w-knots, w-tangles, etc., and their associated chord- or
arrow-diagrammatic counterparts form algebraic structures, and so do any number of these
spaces combined, with maps between them.

We then introduce associated graded structures with respect to a specific filtration, the
machine which in our case takes an algebraic structure of “topological nature” (say, braids
with n strands) and produces the corresponding diagrammatic space (for braids, horizon-
tal chord diagrams on n vertical strands). This is done by taking the associated graded
space with respect to a given filtration, namely the powers of the augmentation ideal in the
algebraic structure.

An expansion, sometimes called a universal finite type invariant, is a map from an alge-
braic structure (in this case one of topological nature) to its associated graded (a structure
of combinatorial/diagrammatic nature), with a certain non-degeneracy property. A homo-
morphic expansion is one that is in addition “well behaved” with respect to the operations
of the algebraic structure (such as composition and strand doubling for braids, for example).

The three main results of the paper are as follows:

(1) As mentioned before, our goal is to provide a topological framework for the Kashiwara-
Vergne (KV) problem. The first result in that direction is Theorem 4.9, in which we
establish a bijection between certain homomorphic expansions of w-tangled foams

1“q-tangles” in [LM], “non-associative tangles” in [BN2].
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(introduced in Section 4) and solutions of the Kashiwara-Vergne equations. More
precisely, “certain” homomorphic expansions means ones that are group-like (a com-
monly used condition), and subject to another very minor technical condition. Sec-
tion 3 leads up to this result by studying the simpler case of w-tangles and identifying
building blocks of its associated graded structure as the spaces which appear in the
[AT] formulation of the KV equations.

(2) In Theorem 4.11 we study an unoriented version of w-tangled foams, and prove that
homomorphic expansions for this space (group-like and subject to the same minor
condition) are in one-to-one correspondence with solutions to the KV problem with
even Duflo function. This sets the stage for perhaps the most interesting result of
the paper:

(3) Section 4.7 marries the theory above with the theory of ordinary (not w-) knotted
trivalent graphs (KTGs). For technical reasons explained in Section 4, we work with
a signed version of KTGs (sKTG). Roughly speaking, homomorphic expansions for
sKTGs are determined by a Drinfel’d associator. Furthermore, sKTGs map naturally
into w-tangled foams.
In Theorem 4.15 we prove that any homomorphic expansion of sKTGs coming from
a horizontal chord associator has a compatible homomorphic expansion of w-tangled
foams, and furthermore, these expansions are in one-to-one correspondence with sym-
metric solutions of the KV problem. This gives a topological explanation for the
relationship between Drinfel’d associators and the KV conjecture.

We note that in [WKO3] we’ll further capitalize on these insights to provide a topological
proof and interpretation for Alekseev, Enriquez and Torossian’s explicit solutions for the KV
conjecture in terms of associators [AET].

Several of the structures of a topological nature in this paper (w-tangles and w-foams) are
introduced as Reidemeister theories. That is, the spaces are built from pictorial generators
(such as crossings) which can be connected arbitrarily, and the resulting pictures are then
factored out by certain relations (“Reidemeister moves”). Technically speaking, this is done
using the framework of circuit algebras (similar to planar algebras but without the planarity
requirement) which are introduced in Section 2.

One of the fundamental theorems of classical knot theory is Reidemeister’s theorem, which
states that isotopy classes of knots are in bijection with knot diagrams modulo Reidemeister
moves. In our case, w-knotted objects have a Reidemeister description and a topological
interpretation in terms of ribbon knotted tubes in R4. However, the analogue of the Reide-
meister theorem, i.e. the statement that these two interpretations coincide, is only known
for w-braids [Mc, D, BH].

For w-tangles and w-foams (and w-knots as well) there is a map δ from the Reidemeister
presentation to the appropriate class of ribbon 2-knotted objects in R4. In our case this means
that all the generators have a local topological interpretation and the relations represent
isotopies. The map δ is certainly a surjection, but it is only conjectured to be injective (in
other words, it is possible that some relations are missing).

The main difficulty in proving the injectivity of δ lies in the management of the ribbon
structure. A ribbon 2-knot is a knotted sphere or long tube in R4 which admits a filling
with only certain types of singularities. While there are Reidemeister theorems for general
2-knots in R4 [CS], the techniques don’t translate well to ribbon 2-knots, mainly because it is
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not well understood how different ribbon structures (fillings) of the same ribbon 2-knot can
be obtained from each other through Reidemeister type moves. The completion of such a
theorem would be of great interest. We suspect that even if δ is not injective, the present set
of generators and relations describes a set of ribbon-knotted tubes in R4 with possibly some
extra combinatorial information, similarly to how, say, dropping the R1 relation in classical
knot theory results in a Reidemeister theory for framed knots with rotation numbers.

The paper is organized as follows: we start with a discussion of general algebraic struc-
tures, associated graded structures, expansions (universal finite type invariants) and “circuit
algebras” in Section 2. In Section 3 we study w-tangles and identify some of the spaces
[AT] where the KV conjecture “lives” as the spaces of “arrow diagrams” (the w-analogue of
chord diagrams) for certain w-tangles. In Section 4 we study w-tangled foams and we prove
the main theorems discussed above. For more detailed information consult the “Section
Summary” paragraphs at the beginning of each of the sections. A glossary of notation is on
page 56.

1.3. Acknowledgement. We wish to thank Anton Alekseev, Jana Archibald, Scott Carter,
Karene Chu, Iva Halacheva, Joel Kamnitzer, Lou Kauffman, Peter Lee, Louis Leung, Jean-
Baptiste Meilhan, Dylan Thurston, Lucy Zhang and the anonymous referees for comments
and suggestions.

2. Algebraic Structures, Expansions, and Circuit Algebras

Section Summary. In this section we introduce the associated graded structure
of an “arbitrary algebraic structure” with respect to powers of its augmentation
ideal (Sections 2.1 and 2.2) and introduce the notions of “expansions” and “homo-
morphic expansions” (2.3). Everything is so general that practically anything is
an example, yet our main goal is to set the language for the examples of w-tangles
and w-tangled foams, which appear later in this paper. Both of these examples are
types of “circuit algebras”, and hence we end this section with a general discussion
of circuit algebras (Sec. 2.4).

2.1. Algebraic Structures. An “algebraic structure” O is some collection (Oα) of sets of
objects of different kinds, where the subscript α denotes the “kind” of the objects inOα, along
with some collection of “operations” ψβ, where each ψβ is an arbitrary map with domain
some product Oα1 × · · · × Oαk

of sets of objects, and range a single set Oα0 (so operations
may be unary or binary or multinary, but they always return a value of some fixed kind).
We also allow some named “constants” within some Oα’s (or equivalently, allow some 0-nary
operations).2 The operations may or may not be subject to axioms — an “axiom” is an
identity asserting that some composition of operations is equal to some other composition
of operations.

Figure 1 illustrates the general notion of an algebraic structure. Here are a few specific
examples:

2Alternatively define “algebraic structures” using the theory of “multicategories” [Lei]. Using this lan-
guage, an algebraic structure is simply a functor from some “structure” multicategory C into the multicat-
egory Set (or into Vect, if all Oi are vector spaces and all operations are multi-linear). A “morphism”
between two algebraic structures over the same multicategory C is a natural transformation between the two
functors representing those structures.
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Figure 1. An algebraic structure
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• We will use 〈b〉, the free group on one generator b, as a running example throughout
this chapter (of course 〈b〉 is isomorphic to Z). This is an algebraic structure with
one kind of objects, a binary operation “multiplication”, a unary operation “inverse”,
one constant “the identity”, and the expected axioms.

• Groups in general: one kind of objects, one binary “multiplication”, one unary “in-
verse”, one constant “the identity”, and some axioms.

• Group homomorphisms: Two kinds of objects, one for each group. 7 operations —
3 for each of the two groups and the homomorphism itself, going between the two
groups. Many axioms.

• A group acting on a set, a group extension, a split group extension and many other
examples from group theory.

• A quandle is a set with an operation ↑, satisfying (x ↑ y) ↑ z = (x ↑ y) ↑ (y ↑ z) and
some further minor axioms. This is an algebraic structure with one kind of objects
and one operation. See [WKO0] for an analysis of quandles from the perspective of
this paper.

• Planar algebras as in [Jon] and circuit algebras as in Section 2.4.
• The algebra of knotted trivalent graphs as in [BN4, Da].
• Let ς : B → S be an arbitrary homomorphism of groups (though our notation suggests
what we have in mind — B may well be braids, and S may well be permutations). We
can consider an algebraic structure O whose kinds are the elements of S, for which
the objects of kind s ∈ S are the elements of Os := ς−1(s), and with the product in
B defining operations Os1 ×Os2 → Os1s2 .

• W-tangles and w-foams, studied in the following two sections of this paper.
• Clearly, many more examples appear throughout mathematics.

2.2. Associated Graded Structures. Any algebraic structure O has an “especially nat-
ural” associated graded structure: that is, we take the associated structure with respect to
a specific and natural filtration. This will be a repeating construction throughout the rest
of this paper series.

First extend O to allow formal linear combinations of objects of the same kind (extending
the operations in a linear or multi-linear manner), then let I, the “augmentation ideal”, be
the sub-structure made out of all such combinations in which the sum of coefficients is 0,
then let Im be the set of all outputs of algebraic expressions (that is, arbitrary compositions
of the operations in O) that have at least m inputs in I (and possibly, further inputs in O),
and finally, set

gradO :=
⊕

m≥0

Im/Im+1. (1)

6



Clearly, with the operations inherited fromO, the associated graded gradO is again algebraic
structure with the same multi-graph of spaces and operations, but with new objects and with
new operations that may or may not satisfy the axioms satisfied by the operations of O. The
main new feature in gradO is that it is a “graded” structure; we denote the degree m piece
Im/Im+1 of gradO by gradmO.

We believe that many of the most interesting graded structures that appear in mathematics
are the result of this construction (i.e., as associated graded structures with respect to
powers of the augmentation ideal), and that many of the interesting graded equations that
appear in mathematics arise when one tries to find “expansions”, or “universal finite type
invariants”, which are also morphisms3 Z : O → gradO (see Section 2.3) or when one studies
“automorphisms” of such expansions4. Indeed, the paper you are reading now is really the
study of the associated graded structures of various algebraic structures associated with w-
knotted objects. We would like to believe that much of the theory of quantum groups (at
“generic” ~) will eventually be shown to be a study of the associatead graded structures of
various algebraic structures associated with v-knotted objects.

Example 2.1. We compute the associated graded structuture of the running example 〈b〉. Al-
lowing formal Q-linear combinations of elements we get Q〈b〉 = Q[b, b−1]. The augmentation
ideal I is generated by differences (bn − 1) as a vector space (where 1 = b0), and generated
by (b− 1) as an ideal.

We claim that grad 〈b〉 ∼= Q[[c]], the algebra of power series in one variable. To show this,
consider the map π : Q[[c]] → grad 〈b〉 by setting π(c) = [b− 1] (mod I2). It is easy to show
explicitly that π is surjective. For example, in degree 1, we need to show that b−1 generates

I/I2. indeed, (bn − 1)− n(b− 1) has a double zero at b = 1, and hence f = (bn−1)−n(b−1)
(b−1)2

is

a polynomial, and bn − 1 = n(b− 1) + f(b− 1)2. So modulo (b− 1)2 ∈ I2, bn − 1 = n(b− 1).
A similar argument works to show that (b− 1)k generates Ik/Ik+1.

Note that 〈b〉 can also be thought of as the pure braid group on two strands: b would be a
“full twist” and c can be represented as a single “horizontal chord”. In other knot theoretic
settings, it is generally relatively easy to find a “candidate associated graded” and a map π,
which can be shown to be surjective by explicit means.

To show that π is injective we are going to use the machinery of “expansions” which is
the tool we use to accomplish similar tasks in the later sections of this paper.

We end this section with two more examples of computing associated graded structures:
the proof of Proposition 2.2 is an exercise; for the proof of Proposition 2.3 see [WKO0].

Proposition 2.2. If G is a group, gradG is a graded associative algebra with unit. Similarly,
the associated graded structure of a group homomorphism is a homomorphism of graded
associative algebras. �

Proposition 2.3. If Q is a unital quandle, grad0Q is one-dimensional and grad>0Q is a
graded right Leibniz algebra5 generated by grad1Q.

3Indeed, if O is finitely presented then finding such a morphism Z : O → gradO amounts to finding its
values on the generators of O, subject to the relations of O. Thus it is equivalent to solving a system of
equations written in some graded spaces.

4The Drinfel’d graded Grothendieck-Teichmuller group GRT is an example of such an automorphism
group. See [Dr3, BN3].

5A Leibniz algebra is a Lie algebra without anti-commutativity, as defined by Loday in [Lod].
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2.3. Expansions and Homomorphic Expansions. We start with the definition. Given
an algebraic structure O let filO denote the filtered structure of linear combinations of
objects in O (respecting kinds), filtered by the powers (Im) of the augmentation ideal I.
Recall also that any graded space G =

⊕

mGm is automatically filtered, by
(
⊕

n≥mGn

)∞

m=0
.

Definition 2.4. An “expansion” Z for O is a map Z : O → gradO that preserves the kinds
of objects and whose linear extension (also called Z) to fil O respects the filtration of both
sides, and for which (gr Z) : (gr fil O = gradO) → (gr gradO = gradO) is the identity map
of gradO; we refer to this as the “universality property”.

In practical terms, this is equivalent to saying that Z is a map O → gradO whose
restriction to Im vanishes in degrees less than m (in gradO) and whose degree m piece is
the projection Im → Im/Im+1.

We come now to what is perhaps the most crucial definition in this paper.

Definition 2.5. A “homomorphic expansion” is an expansion which also commutes with all
the algebraic operations defined on the algebraic structure O.

Why Bother with Homomorphic Expansions? Primarily, for two reasons:

• Often gradO is simpler to work with than O; for one, it is graded and so it allows
for finite “degree by degree” computations, whereas often times, such as in many
topological examples, anything in O is inherently infinite. Thus it can be beneficial
to translate questions about O to questions about gradO. A simplistic example
would be, “is some element a ∈ O the square (relative to some fixed operation) of an
element b ∈ O?”. Well, if Z is a homomorphic expansion and by a finite computation
it can be shown that Z(a) is not a square already in degree 7 in gradO, then we’ve
given a conclusive negative answer to the example question. Some less simplistic and
more relevant examples appear in [BN4].

• Often gradO is “finitely presented”, meaning that it is generated by some finitely
many elements g1, . . . , gk ∈ O, subject to some relations R1 . . . Rn that can be written
in terms of g1, . . . , gk and the operations of O. In this case, finding a homomorphic
expansion Z is essentially equivalent to guessing the values of Z on g1, . . . , gk, in such
a manner that these values Z(g1), . . . , Z(gk) would satisfy the gradO versions of the
relations R1 . . . Rn. So finding Z amounts to solving equations in graded spaces. It
is often the case (as will be demonstrated in this paper; see also [BN2, BN3]) that
these equations are very interesting for their own algebraic sake, and that viewing
such equations as arising from an attempt to solve a problem about O sheds further
light on their meaning.

In practice, often the first difficulty in searching for an expansion (or a homomorphic
expansion) Z : O → gradO is that its would-be target space gradO is hard to identify. It
is typically easy to make a suggestion A for what gradO could be. It is typically easy to
come up with a reasonable generating set Dm for Im (keep some knot theoretic examples in
mind, or Z in Example 2.1). It is a bit harder but not exceedingly difficult to discover some

relations R satisfied by the elements of the image of D in Im/Im+1 (4T,
−→
4T , and more in

knot theory, there are no relations for Z). Thus we set A := D/R; but it is often very hard
to be sure that we found everything that ought to go in R; so perhaps our suggestion A
is still too big? Finding 4T for example was actually not that easy. Could we have missed
some further relations that are hiding in A?
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The notion of an A-expansion, defined below, solves two problems at once. Once we find
an A-expansion we know that we’ve identified gradO correctly, and we automatically get
what we really wanted, a (gradO)-valued expansion.

A

π
��

O

ZA

;;
w

w
w

w
w

w
w

w
w

w

Z
// gradO

gr ZA

OO

Definition 2.6. A “candidate assoctaed graded structure” for an alge-
braic structure O is a graded structure A with the same operations as
O along with a homomorphic surjective graded map π : A → gradO.
An “A-expansion” is a kind and filtration respecting map ZA : O → A
for which (gr ZA) ◦ π : A → A is the identity. One can similarly define
“homomorphic A-expansions”.

Proposition 2.7. If A is a candidate associated graded of O and ZA : O → A is a ho-
momorphic A-expansion, then π : A → gradO is an isomorphism and Z := π ◦ ZA is a
homomorphic expansion. (Often in this case, A is identified with gradO and ZA is identi-
fied with Z).

Proof. π is surjective by birth. Since (gr ZA) ◦ π is the identity, π it is also injective and
hence it is an isomorphism. The rest is immediate. �

Example 2.8. Back to 〈b〉, in Example 2.1 we found a candidate associated graded structure
A = Q[[c]] and a map π : c 7→ [b − 1]. According to Proposition 2.7, it is enough to find
a homomorphic A-expansion, that is, an algebra homomorphism ZA : Q〈b〉 → Q[[c]] such
that gr ZA ◦ π is the identity of Q[[c]]. It is a straightforward calculation to check that any
algebra map defined by ZA(b) = 1 + c + {higher order terms} satisfies this property. If one
seeks a “group-like” homomorphic expansion then ZA(b) = ec is the only solution. In either
case, exhibiting ZA proves that π is injective and hence A is the associated graded structure
of 〈b〉.

2.4. Circuit Algebras. “Circuit algebras” are so common and everyday, and they make
such a useful language (definitely for the purposes of this paper, but also elsewhere), we
find it hard to believe they haven’t made it into the standard mathematical vocabulary6.
People familiar with planar algebras [Jon] may note that circuit algebras are just the same
as planar algebras, except with the planarity requirement dropped from the “connection
diagrams” (and all colourings are dropped as well).

In our context, the main utility of circuit algebras is that they allow for a much simpler
presentation of v(irtual)- and w-tangles. There are planar algebra presentations of v- and
w-tangles, generated by the usual crossings and the “virtual crossing”, modulo the usual as
well as the “virtual” and “mixed” Reidemeister moves. Switching from planar algebras to
circuit algebras however renders the extra generators and relations unnecessary: the “virtual
crossing” becomes merely a circuit algebra artifact, and the new Reidemeister moves are
implied by the circuit algebra structure (see Warning 3.3, Definition 3.4, and Remark 3.5).

The everyday intuition for circuit algebras comes from electronic circuits, whose compo-
nents can be wired together in many, not necessarily planar, ways, and it is not important
to know how these wires are embedded in space. For details and more motivation see Sec-
tion 5.1. We start formalizing this image by defining “wiring diagrams”, the abstract analogs
of printed circuit boards. Let N denote the set of natural numbers including 0, and for n ∈ N

let n denote some fixed set with n elements, say {1, 2, . . . , n}.

6Or have they, and we have been looking the wrong way?
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Definition 2.9. Let k, n, n1, . . . , nk ∈ N be natural numbers. A “wiring
diagram” D with inputs n1, . . . nk and outputs n is an unoriented com-
pact 1-manifold whose boundary is n ∐ n1 ∐ · · · ∐ nk, regarded up to
homeomorphism (on the right is an example with k = 3, n = 6, and
n1 = n2 = n3 = 4). In strictly combinatorial terms, it is a pairing7

of the elements of the set n ∐ n1 ∐ · · · ∐ nk along with a single fur-
ther natural number that counts closed circles. If D1; . . . ;Dm are wiring
diagrams with inputs n11, . . . , n1k1 ; . . . ;nm1, . . . , nmkm and outputs n1; . . . ;nm and D is a
wiring diagram with inputs n1; . . . ;nm and outputs n, there is an obvious “composition”
D(D1, . . . , Dm) (obtained by gluing the corresponding 1-manifolds, and also describable in
completely combinatorial terms) which is a wiring diagram with inputs (nij)1≤i≤kj ,1≤j≤m and

outputs n (note that closed circles may be created in D(D1, . . . , Dm) even if none existed in
D and in D1; . . . ;Dm).

A circuit algebra is an algebraic structure (in the sense of Section 2.2) whose operations
are parametrized by wiring diagrams. Here’s a formal definition:

Definition 2.10. A circuit algebra consists of the following data:

• For every natural number n ≥ 0 a set (or a Z-module) Cn “of circuits with n legs”.
• For any wiring diagramD with inputs n1, . . . nk and outputs n, an operation (denoted
by the same letter) D : Cn1 × · · · × Cnk

→ Cn (or linear D : Cn1 ⊗ · · · ⊗ Cnk
→ Cn if

we work with Z-modules).

We insist that the obvious “identity” wiring diagrams with n inputs and n outputs act as
the identity of Cn, and that the actions of wiring diagrams be compatible in the obvious
sense with the composition operation on wiring diagrams.

A silly but useful example of a circuit algebra is the circuit algebra S of empty circuits,
or in our context, of “skeletons”. The circuits with n legs for S are wiring diagrams with n
outputs and no inputs; namely, they are 1-manifolds with boundary n (so n must be even).

More generally one may pick some collection of “basic components” (analogous to logic
gates and junctions for electronic circuits as in Figure 21) and speak of the “free circuit
algebra” generated by these components; even more generally we can speak of circuit algebras
given in terms of “generators and relations”. (In the case of electronics, our relations may
include the likes of De Morgan’s law ¬(p ∨ q) = (¬p) ∧ (¬q) and the laws governing the
placement of resistors in parallel or in series.) We feel there is no need to present the details
here, yet many examples of circuit algebras given in terms of generators and relations appear
in this paper, starting with the next section. We will use the notation C = CA〈G | R 〉 to
denote the circuit algebra generated by a collection of elements G subject to some collection
R of relations.

People familiar with electric circuits know that connectors sometimes come in “male” and
“female” versions, and that you can’t plug a USB cable into a headphone jack. Thus one
may define “directed circuit algebras” in which the wiring diagrams are oriented, the circuit
sets Cn get replaced by Cp,q for “circuits with p incoming wires and q outgoing wires” and

7We mean “pairing” in the sense of combinatorics, not in the sense of linear algebra. That is, an involution
without fixed point.
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only orientation preserving connections are ever allowed8. Likewise there is a “coloured”
version of everything, in which the wires may be coloured by the elements of some given set
X (which may include among its members the elements “USB” and “audio”) and in which
connections are allowed only if the colour coding is respected. We will leave the formal
definitions of directed and coloured circuit algebras, as well as the definitions of directed and
coloured analogues of the skeletons algebra S and generators and relations for directed and
coloured algebras, as an exercise.

Note that there is an obvious notion of “a morphism between two circuit algebras” and
that circuit algebras (directed or not, coloured or not) form a category. We feel that a precise
definition is not needed. A lovely example is the “implementation morphism” of logic circuits
in the style of Figure 21 in Section 5 into more basic circuits made of transistors and resistors.

Perhaps the prime mathematical example of a circuit algebra is tensor algebra. If t1 is
an element (a “circuit”) in some tensor product of vector spaces and their duals, and t2 is
the same except in a possibly different tensor product of vector spaces and their duals, then
once an appropriate pairing D (a “wiring diagram”) of the relevant vector spaces is chosen,
t1 and t2 can be contracted (“wired together”) to make a new tensor D(t1, t2). The pairing
D must pair a vector space with its own dual, and so this circuit algebra is coloured by the
set of vector spaces involved, and directed, by declaring (say) that some vector spaces are of
one gender and their duals are of the other. We have in fact encountered this circuit algebra
in [WKO1, Section 3.5].

Let G be a group. A G-graded algebra A is a collection {Ag : g ∈ G} of vector spaces,
along with products Ag ⊗ Ah → Agh that induce an overall structure of an algebra on
A :=

⊕

g∈GAg. In a similar vein, we define the notion of an S-graded circuit algebra:

Definition 2.11. An S-graded circuit algebra, or a “circuit algebra with skeletons”, is an
algebraic structure C with spaces Cβ, one for each element β of the circuit algebra of skeletons
S, along with composition operations Dβ1,...,βk

: Cβ1 ×· · ·×Cβk
→ Cβ, defined whenever D is

a wiring diagram and β = D(β1, . . . , βk), so that with the obvious induced structure,
∐

β Cβ

is a circuit algebra. A similar definition can be made if/when the skeletons are taken to be
directed or coloured.

Loosely speaking, a circuit algebra with skeletons is a circuit algebra in which every element
T has a well-defined skeleton ς(T ) ∈ S. Yet note that as an algebraic structure a circuit
algebra with skeletons has more “spaces” than an ordinary circuit algebra, for its spaces are
enumerated by skeleta and not merely by integers. The prime examples for circuit algebras
with skeletons appear in the next section.

3. w-Tangles

Section Summary. In Sec. 3.1 we introduce v-tangles and w-tangles, the obvious
v- and w- counterparts of the standard knot-theoretic notion of “tangles”, and
briefly discuss their finite type invariants and their associated spaces of “arrow
diagrams”, Av(↑n) and Aw(↑n). We then construct a homomorphic expansion Z,
or a “well-behaved” universal finite type invariant for w-tangles. The only algebraic
tool we need to use is exp(a) :=

∑

an/n! (Sec. 3.1 is in fact a routine extension of

8By convention we label the legs of such circuits 1, . . . , p+q, with the first p labels reserved for the incoming
wires and the last q for the outgoing. The inputs of wiring diagrams must be labeled in the opposite way, of
course.
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parts of [WKO1, Section 3]). In Sec. 3.2 we show that Aw(↑n) ∼= U(an⊕tdern⋉ trn),
where an is an Abelian algebra of rank n and where tdern and trn, two of the primary
spaces used by Alekseev and Torossian [AT], have simple descriptions in terms of
cyclic words and free Lie algebras. We also show that some functionals studied
in [AT], div and j, have a natural interpretation in our language. In 3.3 we discuss
a subclass of w-tangles called “special” w-tangles, and relate them by similar means
to Alekseev and Torossian’s sdern and to “tree level” ordinary Vassiliev theory.
Some conventions are described in Sec. 3.4 and the uniqueness of Z is studied in
Sec. 3.5.

3.1. v-Tangles and w-Tangles. With the task of defining circuit algebras completed in
Section 2.4, the definition of v-tangles and w-tangles is simple.

Definition 3.1. The (S-graded) circuit algebra vD of v-tangle diagrams is the S-graded
directed circuit algebra freely generated by two generators in C2,2 called the positive crossing,!4 3

1 2, and the negative crossing, "4 3

1 2. In as much as possible we suppress the leg-numebering
below; with this in mind, vD := ,CA . The skeleton of both crossings is the elementP4 3

1 2 (the pairing of 1&3 and 2&4) in S2,2. That is, ς(!) = ς(") = P.
Example 3.2. An example of a v-tangle diagram V is shown the left side of Figure 2. V is a
circuit algebra composition of two negative crossings and one positive crossing by the wiring
diagram D, as shown. The right side of the same figure shows the skeleton ς(V ) of V : to
produce the skeleton, replace each crossing by the element P in S and apply the same wiring
diagram. The elements of S are oriented 1-manifolds with numbered boundary points, and
hence the result is equal to the one shown in the figure.

Warning 3.3. People familiar with the planar presentation of virtual tangles may be accus-
tomed to the notion of there being another type of crossing: the “virtual crossing”. The
main point of introducing circuit algebras (as opposed to working with planar algebras) is
to eliminate the need for virtual crossings: they become part of the CA structure. This
greatly simplifies the presentation of both v- and w-tangles: there is one less generator, as
seen above, and far fewer relations, as we explain in Remark 3.5.

Definition 3.4. The (S-graded) circuit algebra vT of v-tangles is the S-graded directed
circuit algebra of v-tangle diagrams vD, modulo the R1s, R2 and R3 moves as depicted in

1

2 3 4 5

D =V =

61

2 3 54

6 1

2 3 54

6

ς(V ) =
3
1

2

1

3

4 1 4

2

4

3

2

Figure 2. V ∈ vD3,3 is a v-tangle diagram. V is the result of applying the circuit algebra

operation D : C2,2 × C2,2 × C2,2 → C3,3, given by the wiring diagram shown, acting on two

negative crossings and one positive crossing. In other words V = D(",",!). The skeleton

of V is given by ς(V ) = D(P,P,P), which is equal in S to the diagram shown here. Note

that we usually suppress the circuit algebra numbering of end points.
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=

VR2

=

VR1

=

R3

6=

R1

=

R2

=
w
= 6=

M OC UC

=

VR3R1s

=

Figure 3. The relations (“Reidemeister moves”) R1s, R2 and R3 define v-tangles, adding OC

to these defines w-tangles. VR1, VR2, VR3 and M are not necessary as the circuit algebra

presentation eliminates the need for “virtual crossings” as generators. R1 is not imposed for

framing reasons, and not imposing UC breaks the symmetry between over and under crossings

in wT .

Figure 3. These relations make sense as circuit algebra relations between the two generators,
and preserve skeleta. To obtain the circuit algebra wT of w-tangles we also mod out by the
OC relation of Figure 3 (note that each side in that relation involves only two generators,
with the apparent third “virtual” crossing being merely a circuit algebra artifact). In fewer

words, vT := ,= =,=,CA , and wT := =vT .

Remark 3.5. One may also define v-tangles and w-tangles using the language of planar alge-
bras, except then another generator is required (the “virtual crossing”) and also a number of
further relations shown in Figure 3 (VR1–VR3, M), and some of the operations (non-planar
wirings) become less elegant to define. In our context “virtual crossings” are automatically
present (but unimportant) as part of the circuit algebra structure, and the “virtual Reide-
meister moves” VR1–VR3 and M are also automatically true. In fact, the “rerouting move”
known in the planar presentation, which says that a purely virtual strand of a v-tangle dia-
gram can be re-routed in any other purely virtual way, is precisely the statement that virtual
crossings are unimportant, and the language of circuit algebras makes this fact manifest.

Remark 3.6. For S ∈ S a given skeleton, that is, an oriented 1-manifold with numbered
ends, let us denote by vT (S) and wT (S), respectively, the v- and w-tangles with skeleton S.
That is, vT (S) and wT (S) are the pre-images of S under the skeleton map ς. Note that in
our case the skeleton map is “forgetting topology”, in other words, forgetting the under/over
information of crossings, resulting in empty circuits. With this notation, wT (↑), the set of
w-tangles whose skeleton is a single line, is exactly the set of (long) w-knots discussed in
[WKO1, Section 3]. Note also that wT (↑n), the set of w-tangles whose skeleton is n lines,
includes w-braids with n strands ([WKO1, Section 2]) but it is more general. Neither w-knots
nor w-braids are circuit algebras.

Remark 3.7. Since we do not mod out by the R1 relation, only by its weak (or “spun”) version
R1s, it is more appropriate to call our class of v/w-tangles framed v/w-tangles. (Recall
that framed u-tangles are characterized as the planar algebra generated by the positive and
negative crossings modulo the R1s, R2 and R3 relations.) However, since we are for the
most part interested in studying the framed theories (cf. Comment 4.4), we will reserve the
unqualified name for the framed case, and will explicitly write “unframed v/w-tangles” if
we wish to mod out by R1. For a more detailed explanation of framings and R1 moves, see
[WKO1, Remark 3.5].
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+ +

++
6T
=

RI
=

Figure 4. Relations for v-arrow diagrams on tangle skeletons. Skeleta parts that are not

connected can lie on separate skeleton components; and the dotted arrow that remains in the

same position means “all other arrows remain the same throughout”.

and

+
−→
4T
=

TC
=

+

Figure 5. Relations for w-arrow diagrams on tangle skeletons.

Our next task is to study the associated graded structures grad vT and gradwT of vT and
wT . These are “arrow diagram spaces on tangle skeletons”: directed analogues of the chord
diagram spaces of ordinary finite type invariant theory, and even more similar to the arrow
diagram spaces for braids and knots discussed in [WKO1]. Our convention for figures will
be to show skeletons as thick lines with thin arrows (directed chords). Again, the language
of circuit algebras makes defining these spaces exceedingly simple.

π −
Definition 3.8. The (S-graded) circuit algebra Dv = Dw of
arrow diagrams is the graded and S-graded directed circuit
algebra generated by a single degree 1 generator a in C2,2

called “the arrow” as shown on the right, with the obvious
meaning for its skeleton. There are morphisms π : Dv → vT and π : Dw → wT defined
by mapping the arrow to an overcrossing minus a no-crossing. (On the right some virtual
crossings were added to make the skeleta match). Let Av be Dv/6T , let Aw := Av/TC =

Dw/(
−→
4T , TC), and let Asv := Av/RI and Asw := Aw/RI as usual, with RI, 6T ,

−→
4T , and

TC being the relations shown in Figures 4 and 5. Note that the pair of relations (
−→
4T , TC)

is equivalent to the pair (6T, TC), as discussed in [WKO1, Section 2.3.1].

Proposition 3.9. The maps π above induce surjections π : Asv → grad vT and π : Asw →
gradwT . Hence in the language of Definition 2.6, Asv and Asw are candidate associated
graded structures of vT and wT .
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Proof. Proving that π is well-defined amounts to checking directly that the RI and 6T

or RI,
−→
4T and TC relations are in the kernel of π. (Just like in the finite type theory of

virtual knots and braids.) Thanks to the circuit algebra structure, it is enough to verify the
surjectivity of π in degree 1. We leave this as an exercise for the reader. �

We do not know if Asv is indeed the associated graded of vT (also see [BHLR]). Yet in
the w case, the picture is simple:

Theorem 3.10. The assignment ! 7→ ea (with ea denoting the exponential of a single arrow
from the over strand to the under strand, interpreted via its power series) extends to a well
defined Z : wT → Asw. The resulting map Z is a homomorphic Asw-expansion, and in
particular, Asw ∼= gradwT and Z is a homomorphic expansion.

Proof. The proof is essentially the same as the proof of [WKO1, Theorem 2.15], and follows
[BP, AT]. One needs to check that Z satisfies the Reidemeister moves and the OC relation.
R1s follows easily from RI, R2 is obvious, TC implies OC. For R3, let Asw(↑n) denote the
space of “arrow diagrams on n vertical strands”. We need to verify that R := ea ∈ Asw(↑2)
satisfies the Yang-Baxter equation

R12R13R23 = R23R13R12, in Asw(↑3),

where Rij = eaij means “place R on strands i and j”. By 4T and TC relations, both sides
of the equation can be reduced to ea12+a13+a23 , proving the Reidemeister invariance of Z.
Z is by definition a circuit algebra homomorphism. Hence to show that Z is an Asw-

expansion we only need to check the universality property in degree one, where it is very
easy. The rest follows from Proposition 2.7. �

Remark 3.11. Note that the restriction of Z to w-knots and w-braids (in the sense of Ex-
ample ??) recovers the expansions constructed in [WKO1]. Note also that the filtration and
associated graded structure for w-braids fits into the general algebraic framework of Section 2
by applying the machinery to the skeleton-graded group of w-braids instead the circuit al-
gebra of w-tangles. (The skeleton of a w-braid is the permutation it represents.) However,
as w-knots do not form a finitely presented algebraic structure in the sense of Section 2,
the “finite type” filtration used in [WKO1] does not arise as powers of any augmentation
ideal. This captures the reason why w-knots are “the wrong objects to study”, as we have
mentioned at the beginning of Section 3 of [WKO1].

In a similar spirit to [WKO1, Definition 3.12], one may define a “w-Jacobi diagram” on
an arbitrary skeleton:

Definition 3.12. A “w-Jacobi diagram on a tangle skeleton”9 is a graph made of the fol-
lowing ingredients:

• An oriented “skeleton” consisting of long lines and circles (i.e., an oriented one-
manifold). In figures we draw the skeleton lines thicker.

• Other directed edges, usually called “arrows”.
• Trivalent “skeleton vertices” in which an arrow starts or ends on the skeleton line.
• Trivalent “internal vertices” in which two arrows end and one arrow begins. The
internal vertices are cyclically oriented; in figures the assumed orientation is always
counterclockwise unless marked otherwise. Furthermore, all trivalent vertices must

9We usually short this to “w-Jacobi diagram”, or sometimes “arrow diagram” or just “diagram”.
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= − = −
−−−→
STU1:

−−−→
STU2:

e
e

e

e
e

e

Figure 6. The
−−−→
STU relations for arrow diagrams, with their “central edges” marked e for

easier memorization.

= −
−−−→
IHX: e

e

e

−→
AS: 0 = +

Figure 7. The
−→
AS and

−−−→
IHX relations.

=

=

−

−

−−−→
STU1

−−−→
STU2

e2 e1

Figure 8. Applying
−−−→
STU1 and

−−−→
STU2 to the diagram on the left, we get the two sides of

−→
4T .

be connected to the skeleton via arrows (but not necessarily following the direction
of the arrows).

Note that we allow multiple and loop arrow edges, as long as trivalence and the two-in-
one-out rule is respected.

Formal linear combinations of (w-Jacobi) arrow diagrams form a circuit algebra. We

denote by Awt the quotient of the circuit algebra of arrow diagrams modulo the
−−−→
STU1,−−−→

STU2 relations of Figure 6, and the TC relation. We denote Awt modulo the RI relation by
Aswt. We then have the following “bracket-rise” theorem:

Theorem 3.13. The obvious inclusion of arrow diagrams (with no internal vertices) into
w-Jacobi diagrams descends to a map ῑ : Aw → Awt, which is a circuit algebra isomorphism.

Furthermore, the
−→
AS and

−−−→
IHX relations of Figure 7 hold in Awt. Consequently, it is also

true that Asw ∼= Aswt.

Proof. In the proof of [WKO1, Theorem 3.14] we showed this for long w-knots (i.e., tangles
whose skeleton is a single long line). That proof applies here verbatim, noting that it does
not make use of the connectivity of the skeleton.

In short, to check that ῑ is well-defined, we need to show that the
−−−→
STU relations imply

the
−→
4T relation. This is shown in Figure 8. To show that ῑ is an isomorphism, we construct

an inverse Awt → Aw, which “eliminates all internal vertices” using a sequence of
−−−→
STU

relations. Checking that this is well-defined requires some case analysis; the fact that it is

an inverse to ῑ is obvious. Verifying that the
−→
AS and

−−−→
IHX relations hold in Awt is an easy

exercise. �
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RI: = 0

Figure 9. A 4-wheel and the RI relation re-phrased.

Given the above theorem, we no longer keep the distinction between Aw and Awt and
between Asw and Aswt.

We recall from [WKO1] that a “k-wheel”, sometimes denoted wk, is a an arrow diagram
consisting of an oriented cycle of arrows with k incoming “spokes”, the tails of which rest
on the skeleton. An example is shown in Figure 9. In this language, the RI relation can be

rephrased using the
−−−→
STU relation to say that all one-wheels are 0, or w1 = 0.

Remark 3.14. Note that if T is an arbitrary w tangle, then the equality on the left side of
the figure below always holds, while the one on the right generally doesn’t:

,
T T

= .
T T

6=yet (2)

The arrow diagram version of this statement is that if D is an arbitrary arrow diagram in Aw,
then the left side equality in the figure below always holds (we will sometimes refer to this
as the “head-invariance” of arrow diagrams), while the right side equality (“tail-invariance”)
generally fails.

yet= 0,
D

+
6= 0.

D

+
(3)

We leave it to the reader to ascertain that Equation (2) implies Equation (3). There is also
a direct proof of Equation (3) which we also leave to the reader, though see an analogous
statement and proof in [BN2, Lemma 3.4]. Finally note that a restricted version of tail-
invariance does hold — see Section 3.3.

3.2. Aw(↑n) and the Alekseev-Torossian Spaces.

Definition 3.15. Let Av(↑n) be the part of Av in which the skeleton is the disjoint union
of n directed lines, with similar definitions for Aw(↑n), A

sv(↑n), and Asw(↑n).

Theorem 3.16. (Diagrammatic PBW Theorem.) Let Bw
n denote the space of uni-trivalent

diagrams10 with symmetrized ends coloured with colours in some n-element set (say {x1, . . . , xn}),

modulo the
−→
AS and

−−−→
IHX relations of Figure 7. Then there is an isomorphism Aw(↑n) ∼= Bw

n .

Proof sketch. Readers familiar with the diagrammatic PBW theorem [BN1, Theorem 8]
will note that the proof carries through almost verbatim. There is a map χ : Bw

n → Aw(↑n),
which sends each uni-trivalent diagram to the average of all ways of attaching their univalent
ends to the skeleton of n lines, so that ends of colour xi are attached to the strand numbered

10 Oriented graphs with vertex degrees either 1 or 3, where trivalent vertices must have two edges incoming
and one edge outgoing and are cyclically oriented.
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x1

x1

x2

x1

x1

x3

apply
−−−→
IHX here first

Figure 10. A wheel of trees can be reduced to a combination of wheels, and a wheel of trees

with a Little Prince.

i. I.e., a diagram with ki uni-valent vertices of colour xi is sent to a sum of
∏

i ki! terms,
divided by

∏

i ki!.
The goal is to show that χ is an isomorphism by constructing an inverse for it. The image

of χ are symmetric sums of diagrams, that is, sums of diagrams that are invariant under
permuting arrow endings on the same skeleton component. One can show that in fact any

arrow diagramD inAw(↑n) is equivalent via
−−−→
STU and TC relations to a symmetric sum. The

obvious candidate is its “symmetrization” Sym(D): the average of all ways of permuting the
arrow endings on each skeleton component ofD. It is not true that each diagram is equivalent
to its symmetrization (hence, the “simply delete the skeleton” map is not an inverse for χ),
but it is true that D− Sym(D) has fewer skeleton vertices (lower degree) than D, hence we
can construct χ−1 inductively. The fact that this inductive procedure is well-defined requires
a proof; that proof is essentially the same as the proof of the corresponding fact in [BN1,
Theorem 8]. �

Both Aw(↑n) and Bw
n have a natural bi-algebra structure. In Aw(↑n) multiplication is

given by stacking. For a diagram D ∈ Aw(↑n), the co-product ∆(D) is given by the sum of
all ways of dividing D between a “left co-factor” and a “right cofactor” so that the connected
components of D − S are kept intact, where S is the skeleton of D. In Bw

n multiplication is
given by disjoint union, and ∆ is the sum of all ways of dividing the connected components
of a diagram between two co-factors (here there is no skeleton). Note that the isomorphism
χ above is a co-algebra isomorphism, but not an algebra homomorphism.

The primitives Pw
n of Bw

n are the connected diagrams (and hence the primitives of Aw(↑n)
are the diagrams that remain connected even when the skeleton is removed). Given the “two
in one out” rule for internal vertices, the diagrams in Pw

n can only be trees (diagrams with
no cycles) or wheels (a single oriented cycle with a number of “spokes”, or leaves, attached

to it). “Wheels of trees” can be reduced to simple wheels by repeatedly using
−−−→
IHX, as in

Figure 10.
Thus as a vector space Pw

n is easy to identify. It is a direct sum Pw
n = 〈trees〉 ⊕ 〈wheels〉.

The wheels part is simply the graded vector space generated by all cyclic words in the letters
x1, . . . , xn. Alekseev and Torossian [AT] denote the space of cyclic words by trn, and so shall

we. The trees in Pw
n have leafs coloured x1, . . . , xn. Modulo

−→
AS and

−−−→
IHX, they correspond

to elements of the free Lie algebra lien on the generators x1, . . . , xn. But the root of each such
tree also carries a label in {x1, . . . , xn}, hence there are n types of such trees as separated
by their roots, and so Pw

n is isomorphic to the direct sum trn⊕
⊕n

i=1 lien.
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Note that with Bsw
n and Psw

n defined in the analogous manner (i.e., factoring out by one-
wheels, as in the RI relation), we can also conclude that Psw

n
∼= trn /(deg 1)⊕

⊕n
i=1 lien.

By the Milnor-Moore theorem [MM], Aw(↑n) is isomorphic to the universal enveloping
algebra U(Pw

n ), with Pw
n identified as the subspace Pw(↑n) of primitives of Aw(↑n) using the

PBW symmetrization map χ : Bw
n → Aw(↑n). Thus in order to understand Aw(↑n) as an

associative algebra, it is enough to understand the Lie algebra structure induced on Pw
n via

the commutator bracket of Aw(↑n).
Our goal is to identify Pw(↑n) as the Lie algebra trn⋊(an ⊕ tdern), which in itself is a

combination of the Lie algebras an, tdern and trn studied by Alekseev and Torossian [AT].
Here are the relevant definitions:

Definition 3.17. Let an denote the vector space with basis x1, . . . , xn, also regarded as an
Abelian Lie algebra of dimension n. As before, let lien = lie(an) denote the free Lie algebra
on n generators, now identified as the basis elements of an. Let dern = der(lien) be the
(graded) Lie algebra of derivations acting on lien, and let

tdern = {D ∈ dern : ∀i ∃ai s.t. D(xi) = [xi, ai]}

denote the subalgebra of “tangential derivations”. A tangential derivation D is determined
by the ai’s for whichD(xi) = [xi, ai], and determines them up to the ambiguity ai 7→ ai+αixi,
where the αi’s are scalars. Thus as vector spaces, an ⊕ tdern

∼=
⊕n

i=1 lien.

Definition 3.18. Let Assn = U(lien) be the free associative algebra “of words”, and let Ass+n
be the degree > 0 part of Assn. As before, we let trn = Ass+n /(xi1xi2 · · ·xim = xi2 · · ·ximxi1)
denote “cyclic words” or “(coloured) wheels”. Assn, Ass

+
n , and trn are tdern-modules and

there is an obvious equivariant “trace” tr : Ass+n → trn.

Proposition 3.19. There is a split short exact sequence of Lie algebras

0 −→ trn
ι

−→ Pw(↑n)
π

−→ an ⊕ tdern −→ 0.

Proof. The inclusion ι is defined the natural way: trn is spanned by coloured “floating”
wheels, and such a wheel is mapped into Pw(↑n) by attaching its ends to their assigned
strands in arbitrary order. Note that this is well-defined: wheels have only tails, and tails
commute.

As vector spaces, the statement is already proven: Pw(↑n) is generated by trees and wheels
(with the all arrow endings fixed on n strands). When factoring out by the wheels, only trees
remain. Trees have one head and many tails. All the tails commute with each other, and

commuting a tail with a head on a strand costs a wheel (by
−−−→
STU), thus in the quotient the

head also commutes with the tails. Therefore, the quotient is the space of floating (coloured)
trees, which we have previously identified with

⊕n
i=1 lien

∼= an ⊕ tdern.
It remains to show that the maps ι and π are Lie algebra maps as well. For ι this is

easy: the Lie algebra trn is commutative, and is mapped to the commutative (due to TC)
subalgebra of Pw(↑n) generated by wheels.

To show that π is a map of Lie algebras we give two proofs, first a “hands-on” one, then
a “conceptual” one.

Hands-on argument. an is the image of single arrows on one strand. These commute
with everything in Pw(↑n), and so does an in the direct sum an ⊕ tdern.

It remains to show that the bracket of tdern works the same way as commuting trees in
Pw(↑n). Let D and D′ be elements of tdern represented by (a1, . . . , an) and (a′1, . . . , a

′
n),
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meaning that D(xi) = [xi, ai] and D′(xi) = [xi, a
′
i] for i = 1, . . . , n. Let us compute the

commutator of these elements:

[D,D′](xi) = (DD′ −D′D)(xi) = D[xi, a
′
i]−D′[xi, ai] =

= [[xi, ai], a
′
i] + [xi, Da

′
i]− [[xi, a

′
i], ai]− [xi, D

′ai] = [xi, Da
′
i −D′ai + [ai, a

′
i]].

Now let T and T ′ be two trees in Pw(↑n)/ trn, their heads on strands i and j, respec-
tively (i may or may not equal j). Let us denote by ai (resp. a

′
j) the element in lien given

by forming the appropriate commutator of the colours of the tails of T ’s (resp. T ′). In
tdern, let D = π(T ) and D′ = π(T ′). D and D′ are determined by (0, . . . , ai, . . . , 0), and
(0, . . . , a′j, . . . 0), respectively. (In each case, the i-th or the j-th is the only non-zero compo-
nent.) The commutator of these elements is given by [D,D′](xi) = [Da′i −D′ai + [ai, a

′
i], xi],

and [D,D′](xj) = [Da′j −D′aj + [aj , a
′
j ], xj]. Note that unless i = j, aj = a′i = 0.

In Pw(↑n)/ trn, all tails commute, as well as a head of a tree with its own tails. Therefore,
commuting two trees only incurs a cost when commuting a head of one tree over the tails
of the other on the same strand, and the two heads over each other, if they are on the same
strand.

If i 6= j, then commuting the head of T over the tails of T ′ by
−−−→
STU costs a sum of trees

given by Da′j, with heads on strand j, while moving the head of T ′ over the tails of T costs
exactly −D′ai, with heads on strand i, as needed.

If i = j, then everything happens on strand i, and the cost is (Da′i−D′ai+[ai, a
′
i]), where

the last term happens when the two heads cross each other.
Conceptual argument. There is an action of Pw(↑n) on lien, as follows: introduce and

extra strand on the right. An element L of lien corresponds to a tree with its head on
the extra strand. Its commutator with an element of Pw(↑n) (considered as an element of
Pw(↑n+1) by the obvious inclusion) is again a tree with head on strand (n + 1), defined to
be the result of the action.

Since L has only tails on the first n strands, elements of trn, which also only have tails, act
trivially. So do single (local) arrows on one strand (an). It remains to show that trees act as
tdern, and it is enough to check this on the generators of lien (as the Leibniz rule is obviously
satisfied). The generators of lien are arrows pointing from one of the first n strands, say
strand i, to strand (n + 1). A tree with head on strand i acts on this element, according
−−−→
STU , by forming the commutator, which is exactly the action of tdern.

To identify Pw(↑n) as the semidirect product trn ⋊(an ⊕ tdern), it remains to show that
the short exact sequence of the Proposition splits. This is indeed the case, although not
canonically. Two —of the many— splitting maps u, l : tdern ⊕an → Pw(↑n) are described
as follows: tdern ⊕an is identified with

⊕n
i=1 lien, which in turn is identified with floating

(coloured) trees. A map to Pw(↑n) can be given by specifying how to place the legs on their
specified strands. A tree may have many tails but has only one head, and due to TC, only
the positioning of the head matters. Let u (for upper) be the map placing the head of each
tree above all its tails on the same strand, while l (for lower) places the head below all the
tails. It is obvious that these are both Lie algebra maps and that π ◦ u and π ◦ l are both
the identity of tdern ⊕an. This makes Pw(↑n) a semidirect product. �
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Remark 3.20. Let trsn denote trn mod out by its degree one part (one-wheels). Since the RI
relation is in the kernel of π, there is a similar split exact sequence

0 → tr
s
n

ι
→ Psw π

→ an ⊕ tdern .

Definition 3.21. For any D ∈ tdern, (l−u)D is in the kernel of π, therefore is in the image
of ι, so ι−1(l − u)D makes sense. We call this element divD.

Definition 3.22. In [AT] div is defined as follows: div(a1, . . . , an) :=
∑n

k=1 tr((∂kak)xk),
where ∂k picks out the words of a sum which end in xk and deletes their last letter xk, and
deletes all other words (the ones which do not end in xk).

Proposition 3.23. The div of Definition 3.21 and the div of [AT] are the same.

...

xi2

xi1

xik

xik−1

Proof. It is enough to verify the claim for the linear generators of tdern,
namely, elements of the form (0, . . . , aj , . . . , 0), where aj ∈ lien or equivalently,
single (floating, coloured) trees, where the colour of the head is j. By the
Jacobi identity, each aj can be written in a form aj = [xi1 , [xi2 , [. . . , xik ] . . .].

Equivalently, by
−−−→
IHX, each tree has a standard “comb” form, as shown on the

picture on the right.
For an associative word Y = y1y2 . . . yl ∈ Ass+n , we introduce the notation

[Y ] := [y1, [y2, [. . . , yl] . . .]. The div of [AT] picks out the words that end in xj , forgets the
rest, and considers these as cyclic words. Therefore, by interpreting the Lie brackets as
commutators, one can easily check that for aj written as above,

div((0, . . . , aj , . . . , 0)) =
∑

α : iα=xj

−xi1 . . . xiα−1 [xiα+1 . . . xik ]xj . (4)

j

− =

jj

In Definition 3.21, div of a tree is the difference be-
tween attaching its head on the appropriate strand
(here, strand j) below all of its tails and above. As
shown in the figure on the right, moving the head

across each of the tails on strand j requires an
−−−→
STU re-

lation, which “costs” a wheel (of trees, which is equiv-
alent to a sum of honest wheels). Namely, the head gets connected to the tail in question.
So div of the tree represented by aj is given by

∑

α : xiα=j“connect the head to the α leaf”.

This in turn gets mapped to the formula above via the correspondence between wheels and
cyclic words. �

− =

Remark 3.24. There is an action of tdern

on trn as follows. Represent a cyclic word
w ∈ trn as a wheel in Pw(↑n) via the map
ι. Given an element D ∈ tdern, u(D), as
defined above, is a tree in Pw(↑n) whose
head is above all of its tails. We define D ·
w := ι−1(u(D)ι(w)− ι(w)u(D)). Note that
u(D)ι(w)−ι(w)u(D) is in the image of ι, i.e., a linear combination of wheels, for the following
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reason. The wheel ι(w) has only tails. As we commute the tree u(D) across the wheel, the
head of the tree is commuted across tails of the wheel on the same strand. Each time this
happens the cost, by the

−−−→
STU relation, is a wheel with the tree attached to it, as shown on

the right, which in turn (by
−−−→
IHX relations, as Figure 10 shows) is a sum of wheels. Once

the head of the tree has been moved to the top, the tails of the tree commute up for free by
TC. Note that the alternative definition, D · w := ι−1(l(D)ι(w)− ι(w)l(D)) is in fact equal
to the definition above.

Definition 3.25. In [AT], the group TAutn is defined as exp(tdern). Note that tdern is
positively graded, hence it integrates to a group. Note also that TAutn is the group of
“basis-conjugating” automorphisms of lien, i.e., for g ∈ TAutn, and any xi, i = 1, . . . , n
generator of lien, there exists an element gi ∈ exp(lien) such that g(xi) = g−1

i xigi.

The action of tdern on trn lifts to an action of TAutn on trn, by interpreting exponentials
formally, in other words eD acts as

∑∞
n=0

Dn

n!
. The lifted action is by conjugation: for w ∈ trn

and eD ∈ TAutn, e
D · w = ι−1(euDι(w)e−uD).

Recall that in Section 5.1 of [AT] Alekseev and Torossian construct a map j : TAutn → trn

which is characterized by two properties: the cocycle property

j(gh) = j(g) + g · j(h), (5)

where in the second term multiplication by g denotes the action described above; and the
condition

d

ds
j(exp(sD))|s=0 = div(D). (6)

Now let us interpret j in our context.

Definition 3.26. The adjoint map ∗ : Aw(↑n) → Aw(↑n) acts by “flipping over diagrams
and negating arrow heads on the skeleton”. In other words, for an arrow diagram D,

D∗ := (−1)#{tails on skeleton}S(D),

where S denotes the map which switches the orientation of the skeleton strands (i.e. flips
the diagram over), and multiplies by (−1)#skeleton vertices.

Proposition 3.27. For D ∈ tdern, define a map J : TAutn → exp(trn) by J(eD) :=
euD(euD)∗. Then

exp(j(eD)) = J(eD).

Proof. Note that (euD)∗ = e−lD, due to “Tails Commute” and the fact that a tree has only
one head.

Let us check that log J satisfies properties (5) and (6). Namely, with g = eD1 and h = eD2 ,
and using that trn is commutative, we need to show that

J(eD1eD2) = J(eD1)
(

euD1 · J(eD2)
)

, (7)

where · denotes the action of tdern on trn; and that

d

ds
J(esD)|s=0 = divD. (8)
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Indeed, with BCH(D1, D2) = log eD1eD2 being the standard Baker–Campbell–Hausdorff
formula,

J(eD1eD2) = J(eBCH(D1,D2)) = eu(BCH(D1,D2)e−l(BCH(D1,D2) = eBCH(uD1,uD2)e−BCH(lD1,lD2)

= euD1euD2e−lD2e−lD1 = euD1(euD2e−lD2)e−uD1euD1elD1 = (euD1 · J(D2))J(D1),

as needed.
As for condition (6), a direct computation of the derivative yields

d

ds
J(esD)|s=0 = uD − lD = divD,

as desired. �

3.3. The Relationship with u-Tangles. Let uT be the planar algebra of classical, or
“usual” tangles. There is a map a : uT → wT of u-tangles into w-tangles: algebraically, it is
defined in the obvious way on the planar algebra generators of uT . (It can also be interpreted
topologically as Satoh’s tubing map, see [WKO1, Section 3.1.1], where a u-tangle is a tangle
drawn on a sphere. However, it is only conjectured that the circuit algebra presented here is
a Reidemeister theory for “tangled ribbon tubes in R4”.) The map a induces a corresponding
map α : Au → Asw, which maps an ordinary Jacobi diagram (i.e., unoriented chords with
internal trivalent vertices modulo the usual AS, IHX and STU relations) to the sum of all
possible orientations of its chords (many of which are zero in Asw due to the “two in one
out” rule).

uT
Zu

//

a

��

Au

α

��
wT

Zw
// Asw

It is tempting to ask whether the square on the left commutes. Unfortu-
nately, this question hardly makes sense, as there is no canonical choice for
the dotted line in it. Similarly to the braid case of [WKO1, Section 2.5.5],
the definition of the homomorphic expansion (Kontsevich integral) for u-
tangles typically depends on various choices of “parenthesizations”. Choos-

ing parenthesizations, this square becomes commutative up to some fixed corrections. The
details are in Proposition 4.18.

Yet already at this point we can recover something from the existence of the map a : uT →
wT , namely an interpretation of the Alekseev-Torossian [AT] space of special derivations,

sdern := {D ∈ tdern : D(

n
∑

i=1

xi) = 0}.

Recall from Remark 3.14 that in general it is not possible to slide a strand under an arbitrary
w-tangle. However, it is possible to slide strands freely under tangles in the image of a, and
thus by reasoning similar to the reasoning in Remark 3.14, diagrams D in the image of α
respect “tail-invariance”:

T D

+

+

D
= ⇒T = (9)

Let Pu(↑n) denote the primitives ofAu(↑n), that is, Jacobi diagrams that remain connected
when the skeleton is removed. Remember that Pw(↑n) stands for the primitives of Aw(↑n).

23



Equation (9) readily implies that the image of the composition

Pu(↑n)
α // Pw(↑n)

π // an ⊕ tdern

is contained in an ⊕ sdern. Even better is true.

Theorem 3.28. The image of πα is precisely an ⊕ sdern.

This theorem was first proven by Drinfel’d (Lemma after Proposition 6.1 in [Dr3]), but
the proof we give here is due to Levine [Lev].
Proof. Let lie

d
n denote the degree d piece of lien. Let Vn be the vector space with basis

x1, x2, . . . , xn. Note that

Vn ⊗ lie
d
n
∼=

n
⊕

i=1

lie
d
n
∼= (tdern⊕an)

d,

where tdern is graded by the number of tails of a tree, and an is contained in degree 1.
The bracket defines a map β : Vn ⊗ lie

d
n → lie

d+1
n : for ai ∈ lie

d
n where i = 1, . . . , n, the

“tree” D = (a1, a2, . . . , an) ∈ (tdern ⊕an)
d is mapped to

β(D) =

n
∑

i=1

[xi, ai] = D

(

n
∑

i=1

xi

)

,

where the first equality is by the definition of tensor product and the bracket, and the second
is by the definition of the action of tdern on lien.

Since an is contained in degree 1, by definition sder
d
n = (ker β)d for d ≥ 2. In degree 1, an

is obviously in the kernel, hence (ker β)1 = an ⊕ sder
1
n. So overall, ker β = an ⊕ sdern.

We want to study the image of the map Pu(↑n)
πα
−→ an ⊕ tdern. Under α, all connected

Jacobi diagrams that are not trees or wheels go to zero, and under π so do all wheels.
Furthermore, π maps trees that live on n strands to “floating” trees with univalent vertices
coloured by the strand they used to end on. So for determining the image, we may replace
Pu(↑n) by the space Tn of connected unoriented “floating trees” (uni-trivalent graphs), the
ends (univalent vertices) of which are coloured by the {xi}i=1,..,n. We denote the degree d
piece of Tn, i.e., the space of trees with d+1 ends, by T d

n . Abusing notation, we shall denote
the map induced by πα on Tn by α : Tn → an ⊕ tdern. Since choosing a “head” determines
the entire orientation of a tree by the two-in-one-out rule, α maps a tree in T d

n to the sum
of d+ 1 ways of choosing one of the ends to be the “head”.

We want to show that ker β = imα. This is equivalent to saying that β̄ is injective, where
β̄ : Vn ⊗ lien / imα→ lien is map induced by β on the quotient by imα.

xi

(0, ..., ai, ..., 0)
β
7→

7→

xi

[xi, ai]The degree d piece of Vn ⊗ lien, in the pictorial description, is
generated by floating trees with d tails and one head, all coloured
by xi, i = 1, . . . , n. This is mapped to lie

d+1
n , which is isomorphic

to the space of floating trees with d+1 tails and one head, where
only the tails are coloured by the xi. The map β acts as shown
on the picture on the right.

+

τWe show that β̄ is injective by exhibiting a map τ : lie
d+1
n →

Vn ⊗ lie
d
n / imα so that τ β̄ = I. τ is defined as follows: given a

tree with one head and d + 1 tails τ acts by deleting the head
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and the arc connecting it to the rest of the tree and summing over all ways of choosing a new
head from one of the tails on the left half of the tree relative to the original placement of
the head (see the picture on the right). As long as we show that τ is well-defined, it follows
from the definition and the pictorial description of β that τ β̄ = I.

For well-definedness we need to check that the images of
−→
AS and

−−−→
IHX relations under τ

are in the image of α. This we do in the picture below. In both cases it is enough to check

the case when the “head” of the relation is the head of the tree itself, as otherwise an
−→
AS or

−−−→
IHX relation in the domain is mapped to an

−→
AS or

−−−→
IHX relation, thus zero, in the image.

+
τ

+ + ++ ∈ imα
−→
AS :

CB CB CB

A A A

CB

A

CB CB

A A

− + +− +

CB CB

A A

− =
τ
7→

= −

CB

A

CB CB

A A

− − ∈ imα

−−−→
IHX :

In the
−−−→
IHX picture, in higher degrees A, B and C may denote an entire tree. In this case,

the arrow at A (for example) means the sum of all head choices from the tree A. �

Comment 3.29. In view of the relation between the right half of Equation (9) and the special
derivations sder, it makes sense to call w-tangles that satisfy the condition in the left half of
Equation (9) “special”. The a images of u-tangles are thus special. We do not know if the
global version of Theorem 3.28 holds true. Namely, we do not know whether every special
w-tangle is the a-image of a u-tangle.

3.4. The local topology of w-tangles. So far throughout this section we have presented
w-tangles as a Reidemeister theory: a circuit algebra given by generators and relations.
There is a topological intuition behind this definition: we can interpret the strings of a
w-tangle diagram as oriented tubes in R4, as shown in Figure 11. Each tube has a 3-
dimensional “filling”, and each crossings represents a ribbon intersection between the tubes
where the one corresponding to the under-strand intersects the filling of the over-strand.
(For an explanation of ribbon intersections see [WKO1, Section 2.2.2].) In Figure 11 we use
the drawing conventions of [CS]: we draw surfaces as if projected from R4 to R3, and cut
them open when they are “hidden” by something with a higher 4-th coordinate.

Note that w-braids can also be thought of in terms of flying rings, with “time” being the
fourth dimension; this is equivalent to the tube interpretation in the obvious way. In this
language a crossing represents a ring (the under strand), flying through another (the over
strand). This is described in detail in [WKO1, Section 2.2.1].

The assignment of tangled ribbon tubes in R4 to w-tangles is well-defined (the Reidemeister
and OC relations are satisfied), and after Satoh [Sa] we call it the tubing map and denote it
by δ : {w-tangles} → {Ribbon tubes in R4}. It is natural to expect that δ is an isomorphism,
and indeed it is a surjection. However, the injectivity of δ remains unproven even for long
w-knots. Nonetheless, ribbon tubes in R4 will serve as the topological motivation and local
topological interpretation behind the circuit algebras presented in this paper. In [WKO1,
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Figure 11. A virtual crossing corresponds to non-interacting tubes, while a crossing means

that the tube corresponding to the under strand “goes through” the tube corresponding to

the over strand.

Section 3.1.1] we present a topological construction for δ. We will mention that construction
occasionally in this paper, but only for motivational purposes.

1D

2D

We observe that the ribbon tubes in the image of δ are endowed with two
orientations, we will call these the 1- and 2-dimensional orientations. The one
dimensional orientation is the direction of the tube as a “strand” of the tangle. In
other words, each tube has a “core”11: a distinguished line along the tube, which
is oriented as a 1-dimensional manifold. Furthermore, the tube as a 2-dimensional
surface is oriented as given by δ. An example is shown on the right.

Next we wish to understand the topological meaning of crossing signs. Recall that a
tube in R4 has a “filling”: a solid (3-dimensional) cylinder embedded in R4, with boundary
the tube, and the 2D orientation of the tube induces an orientation of its filling as a 3-
dimensional manifold. At a (non-virtual) crossing the core of one tube intersects the filling
of another transversely. Due to the complementary dimensions, the intersection is a single
point, and the 1D orientation of the core along with the 3D orientation of the filling it passes
through determines an orientation of the ambient space. We say that the crossing is positive
if this agrees with the standard orientation of R4, and negative otherwise. Hence, there are
four types of crossings, given by whether the core of tube A intersects the filling of B or
vice versa, and two possible signs in each case. In the flying ring interpretation, the 1D
orientation of the tube is the direction of the flow of time. The 2D and 1D orientations
of the tube together induce an orientation of the flying ring which is a cross-section of the
tube at each moment. Hence, saying “below” and “above” the ring makes sense, and there
are four types of crossings: ring A flies through ring B from below or from above; and ring
B flies through ring A from below or from above (cf. [WKO1, Exercise 2.7]). A crossing is
positive if the inner ring comes from below, and negative otherwise.

z

R4R3 : z = 0

We take the opportunity here to intro-
duce another notation, to be called the
“band notation”, which is more sugges-
tive of the 4D topology than the strand
notation we have been using so far. We
represent a tube in R4 by a picture of an
oriented band in R3. By “oriented band”
we mean that it has two orientations: a 1D direction (for example an orientation of one of
the edges), and a 2D orientation as a surface. To interpret the 3D picture of a band as an

11The core of Lord Voldemort’s wand was made of a phoenix feather.
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+ − − +

Figure 12. Crossings and crossing signs in band notation.

tube in R4, we add an extra coordinate. Let us refer to the R3 coordinates as x, y and t,
and to the extra coordinate as z. Think of R3 as being embedded in R4 as the hyperplane
z = 0, and think of the band as being made of a thin double membrane. Push the membrane
up and down in the z direction at each point as far as the distance of that point from the
boundary of the band, as shown on the right. Furthermore, keep the 2D orientation of the
top membrane (the one being pushed up), but reverse it on the bottom. This produces an
oriented tube embedded in R4.

In band notation, the four possible crossings appear as in Figure 12, where underneath
each crossing we indicate the corresponding strand picture. The signs for each type of
crossing are also shown. Note that the sign of a crossing depends on the 2D orientation
of the over-strand, as well as the 1D direction of the under-strand. Hence, switching only
the direction (1D orientation) of a strand changes the sign of the crossing if and only if the
strand involved is the under strand. However, fully changing the orientation (both 1D and
2D) always switches the sign of the crossing. Note that switching the strand direction in the
strand notation corresponds to the complete (both 1D and 2D) orientation switch.

3.5. Good properties and uniqueness of the homomorphic expansion. In much
the same way as in the case of braids [WKO1, Section 2.5.1], Z has a number of good
properties with respect to various tangle operations: it is group-like12; it commutes with
adding an inert strand (note that this is a circuit algebra operation, hence it doesn’t add
anything beyond homomorphicity); and it commutes with deleting a strand and with strand
orientation reversals. All but the last of these were explained in the context of braids and the
explanations still hold. Orientation reversal Sk : wT → wT is the operation which reverses
the orientation of the k-th component. Note that in the world of topology (via Satoh’s tubing
map) this means reversing both the 1D and the 2D orientations. The induced diagrammatic
operation Sk : A

w(T ) → Aw(Sk(T )), where T denotes the skeleton of a given w-tangle, acts
by multiplying each arrow diagram by (−1) raised to the power the number of arrow endings
(both heads and tails) on the k-th strand, as well as reversing the strand orientation. Saying
that “Z commutes with Sk” means that the appropriate square commutes.

The following theorem asserts that a well-behaved homomorphic expansion of w-tangles
is unique:

Theorem 3.30. The only homomorphic expansion satisfying the good properties described
above is the Z defined in Section 3.1.

12In practice this simply means that the value of the crossing is an exponential.
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ρ = +
Proof. We first prove the following claim: Assume, by contradiction,
that Z ′ is a different homomorphic expansion of w-tangles with the good
properties described above. Let R′ = Z ′(!) and R = Z(!), and denote
by ρ the lowest degree homogeneous non-vanishing term of R′−R. (Note that R′ determines
Z ′, so if Z ′ 6= Z, then R′ 6= R.) Suppose ρ is of degree k. Then we claim that ρ = α1w

1
k+α2w

2
k

is a linear combination of w1
k and w

2
k, where w

i
k denotes a k-wheel living on strand i, as shown

on the right.
Before proving the claim, note that it leads to a contradiction. Let di denote the operation

“delete strand i”. Then up to degree k, we have d1(R
′) = α2w

1
k and d2(R

′) = α1w
2
k, but Z

′

is compatible with strand deletions, so α1 = α2 = 0. Hence Z is unique, as stated.
On to the proof of the claim, note that Z ′ being an expansion determines the degree 1

term of R′ (namely, the single arrow a12 from strand 1 to strand 2, with coefficient 1). So
we can assume that k ≥ 2. Note also that since both R′ and R are group-like, ρ is primitive.
Hence ρ is a linear combination of connected diagrams, namely trees and wheels.

Both R and R′ satisfy the Reidemeister 3 relation:

R12R13R23 = R23R13R12, R′12R′13R′23 = R′23R′13R′12

where the superscripts denote the strands on which R is placed (compare with the proof of
Theorem 3.10). We focus our attention on the degree k + 1 part of the equation for R′, and
use that up to degree k+1. We can write R′ = R+ ρ+µ, where µ denotes the degree k+1
homogeneous part of R′ −R. Thus, up to degree k + 1, we have

(R12+ρ12+µ12)(R13+ρ13+µ13)(R23+ρ23+µ23) = (R23+ρ23+µ23)(R13+ρ13+µ13)(R12+ρ12+µ12).

The homogeneous degree k + 1 part of this equation is a sum of some terms which contain
ρ and some which don’t. The diligent reader can check that those which don’t involve ρ
cancel on both sides, either due to the fact that R satisfies the Reidemeister 3 relation, or
by simple degree counting. Rearranging all the terms which do involve ρ to the left side, we
get the following equation, where aij denotes an arrow pointing from strand i to strand j:

[a12, ρ13] + [ρ12, a13] + [a12, ρ23] + [ρ12, a23] + [a13, ρ23] + [ρ13, a23] = 0. (10)

The third and fifth terms sum to [a12+a13, ρ23], which is zero due to the “head-invariance”
of diagrams, as in Remark 3.14.

We treat the tree and wheel components of ρ separately. Let us first assume that ρ is
a linear combination of trees. Recall that the space of trees on two strands is isomorphic
to lie2⊕ lie2, the first component given by trees whose head is on the first strand, and the
second component by trees with their head on the second strand. Let ρ = ρ1 + ρ2, where ρi
is the projection to the i-th component for i = 1, 2.

Note that due to TC, we have [a12, ρ132 ] = [ρ122 , a
13] = [ρ121 , a

23] = 0. So Equation (10)
reduces to

[a12, ρ131 ] + [ρ121 , a
13] + [ρ122 , a

23] + [ρ131 , a
23] + [ρ132 , a

23] = 0

The left side of this equation lives in
⊕3

i=1 lie3. Notice that only the first term lies in the
second direct sum component, while the second, third and last terms live in the third one,
and the fourth term lives in the first. This in particular means that the first term is itself

zero. By
−−−→
STU , this implies

0 = [a12, ρ131 ] = −[ρ1, x1]
13
2 ,
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where [ρ1, x1]
13
2 means the tree defined by the element [ρ1, x1] ∈ lie2, with its tails on strands

1 and 3, and head on strand 2. Hence, [ρ1, x1] = 0, so ρ1 is a multiple of x1. The tree given
by ρ1 = x1 is a degree 1 element, a possibility we have eliminated, so ρ1 = 0.

Equation (10) is now reduced to

[ρ122 , a
23] + [ρ132 , a

23] = 0.

Both terms are words in lie3, but notice that the first term does not involve the letter x3.
This means that if the second term involves x3 at all, i.e., if ρ2 has tails on the second
strand, then both terms have to be zero individually. Assuming this and looking at the
first term, ρ122 is a Lie word in x1 and x2, which does involve x2 by assumption. We have
[ρ122 , a

23] = [x2, ρ
12
2 ] = 0, which implies ρ122 is a multiple of x2, in other words, ρ is a single

arrow on the second strand. This is ruled out by the assumption that k ≥ 2.
On the other hand if the second term does not involve x3 at all, then ρ2 has no tails on

the second strand, hence it is of degree 1, but again k ≥ 2. We have proven that the “tree
part” of ρ is zero.

So ρ is a linear combination of wheels. Wheels have only tails, so the first, second and
fourth terms of (10) are zero due to the tails commute relation. What remains is [ρ13, a23] = 0.
We assert that this is true if and only if each linear component of ρ has all of its tails on one
strand.

To prove this, recall each wheel of ρ13 represents a cyclic word in letters x1 and x3. The
map r : ρ13 7→ [ρ13, a23] is a map tr2 → tr3, which sends each cyclic word in letters x1 and x3
to the sum of all ways of substituting [x2, x3] for one of the x3’s in the word. Note that if
we expand the commutators, then all terms that have x2 between two x3’s cancel. Hence all
remaining terms will be cyclic words in x1 and x3 with a single occurrence of x2 in between
an x1 and an x3.

We construct an almost-inverse r′ to r: for a cyclic word w in tr3 with one occurrence of
x2, let r

′ be the map that deletes x2 from w and maps it to the resulting word in tr2 if x2
is followed by x3 in w, and maps it to 0 otherwise. On the rest of tr3 the map r′ may be
defined to be 0.

The composition r′r takes a cyclic word in x1 and x3 to itself multiplied by the number
of times a letter x3 follows a letter x1 in it. The kernel of this map can consist only of cyclic
words that do not contain the sub-word x3x1, namely, these are the words of the form xk3 or
xk1. Such words are indeed in the kernel of r, so these make up exactly the kernel of r. This
is exactly what needed to be proven: all wheels in ρ have all their tails on one strand.

This concludes the proof of the claim, and the proof of the theorem. �

4. w-Tangled Foams

Section Summary. In this section we add “foam vertices” to w-tangles (and a
few lesser things as well) and ask the same questions we asked before; primarily,
“is there a homomorphic expansion?”. As we shall see, in the current context this
question is equivalent to the Alekseev-Torossian [AT] version of the Kashiwara-
Vergne [KV] problem and explains the relationship between these topics and Drin-
fel’d’s theory of associators.
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4.1. The Circuit Algebra of w-Tangled Foams. In the same manner as we did for
tangles, we will present the circuit algebra of w-tangled foams via its Reidemeister-style
diagrammatic description accompanied by a local topological interpretation.

Definition 4.1. Let wTF o (where o stands for “orientable”, to be explained in Section 4.5)
be the algebraic structure

wTF o = CA
〈

,, , ,
∣

∣

∣

w-relations as in
Section 4.1.2

∣

∣

∣

w-operations as
in Section 4.1.3

〉

.

Hence wTF o is the circuit algebra generated by the generators listed above and described
below, modulo the relations described in Section 4.1.2, and augmented with several “auxiliary
operations”, which are a part of the algebraic structure of wTF o but are not a part of its
structure as a circuit algebra, as described in Section 4.1.3. To be more precise, wTF o is
skeleton-graded where the circuit algebra of skeleta So is a version of the S introduced in
Section 2.4, but with vertices and caps included (as opposed to only empty circuits).

To be completely precise, we have to admit that wTF o as a circuit algebra
has more generators than shown above. The last two generators are “foam
vertices”, as will be explained shortly, and exist in all possible orientations of the three
strands. Some examples are shown on the right. However, in Section 4.1.3 we will describe
the operation “orientation switch” which allows switching the orientation of any given strand.
In the algebraic structure which includes this extra operation in addition to the circuit algebra
structure, the generators of the definition above are enough.

4.1.1. The generators of wTF o. There is topological meaning to each of the generators of
wTF o: they each stand for a certain local feature of framed knotted ribbon tubes in R4. As
in Section 3.4, the tubes are oriented as 2-dimensional surfaces, and also have a distinguished
core with a 1-dimensional orientation (direction).

The crossings are as explained in Section 3.4: the under-strand denotes the ring flying
through, or the “thin” tube. Recall that there really are four kinds of crossings, but in
the circuit algebra the two not shown are obtained from the two that are shown by adding
virtual crossings (see Figures 11 and 12).

A bulleted end denotes a cap on the tube, or a flying ring that shrinks to
a point, as in the figure on the right. For further motivation, in terms of the
topological construction of Satoh’s tubing map [WKO1, Section 3.1.1], the cap
means that “the string is attached to the bottom of the thickened surface”, as shown in the
figure below. We Recall that the tubing map is the composition

γ × S1 →֒ Σ× [−ǫ, ǫ] →֒ R4.

Here γ is a trivalent tangle “drawn on the virtual surface Σ”, with caps ending on Σ×{−ǫ}.
The first embedding above is the product of this “drawing” with an S1, while the second
arises from the unit normal bundle of Σ in R4. For each cap (c,−ǫ) the tube resulting from
Satoh’s map has a boundary component ∂c = (c,−ǫ)×S1. Follow the tubing map by gluing
a disc to this boundary component to obtain the capped tube mentioned above.

Satoh(c,−ǫ)

Σ× [−ǫ, ǫ]

(c,−ǫ)× S1

glue disc

30



The last two generators denote singular “foam vertices”. As the notation sug-
gests, a vertex can be thought of as “half of a crossing”. To make this precise
using the flying rings interpretation, the first singular vertex represents the movie
shown on the left: the ring corresponding to the right strand approaches the ring
represented by the left strand from below, flies inside it, and then the two rings
fuse (as opposed to a crossing where the ring coming from the right would continue
to fly out to above and to the left of the other one). The second vertex is the
movie where a ring splits radially into a smaller and a larger ring, and the small
one flies out to the right and below the big one.

Σ× [−ǫ, ǫ]
The vertices can also be interpreted topologically via a natu-

ral extension of Satoh’s tubing map. For the first vertex, imag-
ine the broken right strand approaching the continuous left
strand directly from below in a thickened surface, as shown.

The reader might object that there really are four types of vertices (as there are four
types of crossings), and each of these can be viewed as a “fuse” or a “split” depending on the
strand directions, as shown in Figure 13. However, looking at the fuse vertices for example,
observe that the last two of these can be obtained from the first two by composing with
virtual crossings, which always exist in a circuit algebra.

The sign of a vertex can be defined the same way as the sign of a crossing (see Section 3.4).
We will sometimes refer to the first generator vertex as “the positive vertex” and to the second
one as “the negative vertex”. We use the band notation for vertices the same way we do for
crossings: the fully coloured band stands for the thin (inner) ring.

+ − + −

+− + −

Figure 13. Vertex types in wTF o.

4.1.2. The relations of wTF o. In addition to the usual R1s, R2, R3, and OCmoves of Figure 3,
we more relations are added to describe the behaviour of the additional features.

Comment 4.2. As before, the relations have local topological explanations, and we conjecture
that they provide a Reidemeister theory for “w-tangled foams”, that is, knotted ribbon tubes
with foam vertices in R4. In this section we list the relations along with the topological
reasoning behind them. However, for any rigorous purposes below, wTF o is studied as a
circuit algebra given by the declared generators and relations, with topology serving only as
intuition.

Recall that topologically, a cap represents a capped tube or equivalently, flying ring shrink-
ing to a point. Hence, a cap on the thin (or under) strand can be “pulled out” from a crossing,
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but the same is not true for a cap on the thick (or over) strand, as shown below. This is the
case for any orientation of the strands. We denote this relation by CP, for Cap Pull-out.

.

.

,

,

CP :

yet

yet

The Reidemeister 4 relations assert that a strand can be moved under or over a crossing, as
shown in the picture below. The ambiguously drawn vertices in the picture denote a vertex
of any kind (as described in Section 4.1.1), and the strands can be oriented arbitrarily. The
local topological (tube or flying ring) interpretations can be read from the pictures below.
These relations will be denoted R4.

R4 :

4.1.3. The auxiliary operations of wTF o. The circuit algebra wTF o is equipped with several
extra operations.

The first of these is the familiar orientation switch. We will, as mentioned in Section 3.4,
distinguish between switching both the 2D and 1D orientations, or just the strand (1D)
direction.

Topologically orientation switch, denoted Se, is the switch of both orientations of the
strand e. Diagrammatically (and this is the definition) Se is the operation which reverses
the orientation of a strand in a wTF o diagram. The reader can check that when applying
Satoh’s tubing map, this amounts to reversing both the direction and the 2D orientation of
the tube arising from the strand.

e e

The operation which, in topology world, reverses a tube’s direction but
not its 2D orientation is called “adjoint”, and denoted by Ae. This is
slightly more intricate to define rigorously in terms of diagrams. In ad-
dition to reversing the direction of the strand e of the wTF o diagram, Ae

also locally changes each crossing of e over another strand by adding two
virtual crossings, as shown on the right. We recommend for the reader to
convince themselves that this indeed represents a direction switch in topology after reading
Section 4.5.

Remark 4.3. As an example, let us observe how the negative generator vertex can be ob-
tained from the positive generator vertex by adjoint operations and composition with virtual
crossings, as shown in Figure 14. Note that also all other vertices can be obtained from the
positive vertex via orientation switch and adjoint operations and composition by virtual
crossings.
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compose w/
virtual xing

= The negative
vertex

21

3

A1A2A3

1

33

2 1 2

Figure 14. Switching strand orientations at a vertex. The adjoint operation only switches

the tube direction, hence in the band picture only the arrows change. To express this vertex

in terms of the negative generating vertex in strand notation, we use a virtual crossing (see

Figure 13).

As a small exercise, it is worthwhile to convince ourselves of the effect of orientation switch
operations on the band picture. For example, replace A1A2A3 by S1S2S3 in figure 14. In
the strand diagram, this will only reverse the direction of the strands. The reader can check
that in the band picture not only the arrows will reverse but also the blue band will switch
to be on top of the red band.

Comment 4.4. Framings were discussed in Section 3.4, but have not played a significant
role so far, except to explain the lack of a Reidemeister 1 relation. We now need to dis-
cuss framings in order to provide a topological explanation for the unzip (tube doubling)
operation.

In the local topological interpretation of wTF o, strands represent ribbon-knotted tubes
with foam vertices, which are also equipped with a framing, arising from the blackboard
framing of the strand diagrams via Satoh’s tubing map. Strand doubling is the operation
of doubling a tube by “pushing it off itself slightly” in the framing direction, as shown in
Figure 15.

Recall that ribbon knotted tubes have a “filling”, with only “ribbon” self-intersections
[WKO1, Section 2.2.2]. When we double a tube, we want this ribbon property to be pre-
served. This is equivalent to saying that the ring obtained by pushing off any given girth of
the tube in the framing direction is not linked with the original tube, which is indeed the
case.

Framings arising from the blackboard framing of strand diagrams via
Satoh’s tubing map always match at the vertices, with the normal vectors
pointing either directly towards or away from the center of the singular
ring. Note that the orientations of the three tubes may or may not match.
An example of a vertex with the orientations and framings shown is on the
right. Note that the framings on the two sides of each band are mirror
images of each other, as they should be.

Unzip, or tube doubling is perhaps the most interesting of the auxiliary wTF o operations.
As mentioned above, topologically this means pushing the tube off itself slightly in the
framing direction. At each of the vertices at the two ends of the doubled tube there are two
tubes to be attached to the doubled tube. At each end, the normal vectors pointed either
directly towards or away from the center, so there is an “inside” and an “outside” ending
ring. The two tubes to be attached also come as an “inside” and an “outside” one, which
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Figure 15. Unzipping a tube, in band notation with orientations and framing marked.

defines which one to attach to which. An example is shown in Figure 15. Unzip can only be
done if the 1D and 2D orientations match at both ends.

e
ue

To define unzip rigorously, we must talk only of strand diagrams.
The natural definition is to let ue double the strand e using the
blackboard framing, and then attach the ends of the doubled strand
to the connecting ones, as shown on the right. We restrict unzip
to strands whose two ending vertices are of different signs. This is
a somewhat artificial condition which we impose to get equations
equivalent to the [AT] equations.

A related operation, disk unzip, is unzip done on a capped strand, pushing the tube off
in the direction of the framing (in diagrammatic world, in the direction of the blackboard
framing), as before. An example in the line and band notations (with the framing suppressed)
is shown below.

ue =uee e

Finally, we allow deletion de of “long linear” strands, meaning strands that do not end in
a vertex on either side. To summarize,

wTF o = CA
〈

,, , ,
∣

∣

∣

R1s, R2, R3, R4,
OC, CP

∣

∣

∣

∣

Se, Ae, ue, de

〉

.

The goal, as before, is to construct a homomorphic expansion for wTF o. However, first we
need to understand its target space, the associated graded structure gradwTF o.

4.2. The Associated Graded Structure. Mirroring the previous section, we describe
the associated graded Asw of wTF o and its “full version” Aw as circuit algebras on certain
generators modulo a number of relations. From now on we will write A(s)w to mean “Aw

and/or Asw”.

A(s)w = CA
〈

, ,,
∣

∣

∣

relations as in
Section 4.2.1

∣

∣

∣

operations as in
Section 4.2.2

〉

.

In other words, A(s)w are the circuit algebras of arrow diagrams on trivalent (or foam)
skeletons with caps; that is, skeleta are elements of So as in Definition 4.1. Note that all
but the first of the generators are skeleton features (of degree 0), and that the single arrow
is the only generator of degree 1. As for the generating vertices, the same remark applies as
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in Definition 4.1, that is, there are more vertices with all possible strand orientations needed
to generate A(s)w as circuit algebras.

4.2.1. The relations of A(s)w. In addition to the usual
−→
4T and TC relations (see Figure 5),

as well as RI in the case of Asw = Aw/RI, diagrams in A(s)w satisfy the following additional
relations:

Vertex invariance, denoted by VI, are relations arising the same way as
−→
4T does, but with

the participation of a vertex as opposed to a crossing:

± ± ± ±± ± = 0, and = 0.

The other end of the arrow is in the same place throughout the relation, somewhere outside
the picture shown. The signs are positive whenever the strand on which the arrow ends
is directed towards the vertex, and negative when directed away. The ambiguously drawn
vertex means any kind of vertex, but the same one throughout.

= 0
The CP relation (a cap can be pulled out from under a strand but not from

over, Section 4.1.2) implies that arrow heads near a cap are zero, as shown on the
right. Denote this relation also by CP. (Also note that a tail near a cap is not
set to zero.)

As in the previous sections, and in particular in Definition 3.12, we define a “w-Jacobi
diagram” (or just “arrow diagram”) on a foam skeleton by allowing trivalent chord vertices.
Denote the circuit algebra of formal linear combinations of arrow diagrams by A(s)wt. We
have the following bracket-rise theorem:

Theorem 4.5. The obvious inclusion of diagrams induces a circuit algebra isomorphism

A(s)w ∼= A(s)wt. Furthermore, the
−→
AS and

−−−→
IHX relations of Figure 7 hold in A(s)wt.

Proof. Same as the proof of Theorem 3.13. �

As in Section 3.1, the primitive elements of A(s)w are connected diagrams (that is, con-
nected even with the skeleton removed), namely trees and wheels. Before moving on to the
auxiliary operations of A(s)w, let us make two useful observations:

Lemma 4.6. Aw( ), the part of Aw with skeleton , is isomorphic as a vector space to the
completed polynomial algebra freely generated by wheels wk with k ≥ 1. Likewise Asw( ),
except here k ≥ 2.

Proof. Any arrow diagram with an arrow head at its top is zero by the Cap Pull-out (CP)
relation. If D is an arrow diagram that has a head somewhere on the skeleton but not at

the top, then one can use repeated
−−−→
STU relations to commute the head to the top at the

cost of diagrams with one fewer skeleton head.
Iterating this procedure, we can get rid of all arrow heads, and hence write D as a linear

combination of diagrams having no heads on the skeleton. All connected components of such
diagrams are wheels.

To prove that there are no relations between wheels in A(s)w( ), let SL : A
(s)w(↑1) →

A(s)w(↑1) (resp. SR) be the map that sends an arrow diagram to the sum of all ways of
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dropping one left (resp. right) arrow (on a vertical strand, left means down and right means
up). Define

F :=

∞
∑

k=0

(−1)k

k!
Dk

R(SL + SR)
k,

where DR is a short right arrow. We leave it as an exercise for the reader to check that F is
a bi-algebra homomorphism that kills diagrams with an arrow head at the top (i.e., CP is
in the kernel of F ), and F is injective on wheels. This concludes the proof. �

Lemma 4.7. A(s)w(Y ) = A(s)w(↑2), where A(s)w(Y ) stands for the space of arrow diagrams
whose skeleton is a Y -graph with any orientation of the strands, and as before A(s)w(↑2) is
the space of arrow diagrams on two strands.

Proof. We can use the vertex invariance (VI) relation to push all arrow heads and tails
from the “trunk” of the vertex to the other two strands. �

4.2.2. The auxiliary operations of A(s)w. Recall from Section 3.4 that the orientation switch
Se (i.e. changing both the 1D and 2D orientations of a strand) always changes the sign of
a crossing involving the strand e. Hence, letting S denote any foam (trivalent) skeleton, the
induced arrow diagrammatic operation is a map Se : A

(s)w(S) → A(s)w(Se(S)) which acts
by multiplying each arrow diagram by (−1) raised to the number of arrow endings on e
(counting both heads and tails).

The adjoint operation Ae (i.e. switching only the strand direction), on the other hand,
only changes the sign of a crossing when the strand being switched is the under- (or through)
strand. (See section 3.4 for pictures and explanation.) Therefore, the arrow diagrammatic
Ae acts by switching the direction of e and multiplying each arrow diagram by (−1) raised
to the number of arrow heads on e. Note that in A(s)w(↑n) taking the adjoint on every strand
gives the adjoint map of Definition 3.26.

e

ue +
The arrow diagram operations induced by unzip and disc un-

zip (both to be denoted ue, and interpreted appropriately accord-
ing to whether the strand e is capped) are maps ue : A

(s)w(S) →
A(s)w(ue(S)), where each arrow ending (head or tail) on e is mapped to a sum of two arrows,
one ending on each of the new strands, as shown on the right. In other words, if in an arrow
diagram D there are k arrow ends on e, then ue(D) is a sum of 2k arrow diagrams.

The operation induced by deleting the long linear strand e is the map de : A
(s)w(S) →

A(s)w(de(S)) which kills arrow diagrams with any arrow ending (head or tail) on e, and
leaves all else unchanged, except with e removed.

Definition 4.8. In summary,

A(s)w = CA
〈

, ,,
∣

∣

∣

−→
4T , TC, VI, CP,
(RI for Asw)

∣

∣

∣

∣

Se, Ae, ue, de

〉

.

4.3. The homomorphic expansion. The following is one of the main theorems of this
paper:
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Theorem 4.9 (Proof in Section 4.4). There exists a group-like13 homomorphic expansion for
wTF o, i.e. a group-like expansion Z : wTF o → Asw which is a map of circuit algebras and also
intertwines the auxiliary operations of wTF o with their arrow diagrammatic counterparts. In
fact, there is a bijection between the set of solutions (F, a) of the generalized KV problem
(see Section 4.4) and the set of homomorphic expansions for wTF o which do not contain local
arrows14 in the value V of the vertex.

Since both wTF o and Asw are circuit algebras defined by generators and relations, when
looking for a suitable Z all we have to do is to find values for each of the generators of
wTF o so that these satisfy (in Asw) the equations which arise from the relations in wTF o

and the homomorphicity requirement. In this section we derive these equations and in
the next section we show that they are equivalent to the Alekseev-Torossian version of the
Kashiwara-Vergne equations [AT]. In [AET] Alekseev Enriquez and Torossian construct
explicit solutions to these equations using associators. In [WKO3] we will interpret these
results in our context of homomorphic expansions for w-tangled foams.

Let R := Z(!) ∈ Asw(↑2). It follows from the Reidemeister 2 relation that Z(") =
(R−1)21. As discussed in Sections 3.1 and 3.5, Reidemeister 3 with group-likeness and homo-
morphicity implies that R = ea, where a is a single arrow pointing from the over to the under
strand. Let C := Z( ) ∈ Asw( ). By Lemma 4.6, we know that C is made up of wheels only.
Finally, let V = V + := Z( ) ∈ Asw( ) ∼= Asw(↑2), and V

− := Z( ) ∈ Asw( ) ∼= Asw(↑2).
Before we translate each of the relations of Section 4.1.2 to equations let us slightly extend

the notation used in Section 3.5. Recall that R23, for instance, meant “R placed on strands
2 and 3”. In this section we also need notation such as R(23)1, which means “R with its first
strand doubled, placed on strands 2, 3 and 1”.

Now on to the relations, note that Reidemeister 2 and 3 and Overcrossings Commute
have already been dealt with. Of the two Reidemeister 4 relations, the first one induces an
equation that is automatically satisfied. Pictorially, the equation looks as follows:

Z
=

V

V

R

R
=

+

V
R

R
VR

R

VI

In other words, we obtained the equation

V 12R3(12) = R32R31V 12.

However, observe that by the “head-invariance” property of arrow diagrams (Remark 3.14)
V 12 and R3(12) commute on the left hand side. Hence the left hand side equals R3(12)V 12 =
R32R31V 12. Also, R3(12) = ea

31+a32 = ea
32
ea

31
= R32R31, where the second step is due to the

fact that a31 and a32 commute. Therefore, the equation is true independently of the choice
of V .

We have no such luck with the second Reidemeister 4 relation, which, in the same manner
as in the paragraph above, translates to the equation

V 12R(12)3 = R23R13V 12. (11)

13The formal definition of the group-like property is along the lines of [WKO1, Section 2.5.1.2]. In practice,
it means that the Z-values of the vertices, crossings, and cap (denoted V , R and C below) are exponentials
of linear combinations of connected diagrams.

14For a detailed explanation of this minor point see the third paragraph of the proof.
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There is no “tail invariance” of arrow diagrams, so V and R do not commute on the left
hand side; also, R(12)3 6= R23R13. As a result, this equation puts a genuine restriction on the
choice of V .

The Cap Pull-out (CP) relation translates to the equation R12C2 = C2. This is true
independently of the choice of C: by head-invariance, R12C2 = C2R12. Now R12 is just
below the cap on strand 2, and the cap “kills heads”, in other words, every term of R12 with
an arrow head at the top of strand 2 is zero. Hence, the only surviving term of R12 is 1 (the
empty diagram), which makes the equation true.

The homomorphicity of the orientation switch operation was used to prove the uniqueness
of R in Theorem 3.30. The homomorphicity of the adjoint leads to the equation V− =
A1A2(V ) (see Figure 14), eliminating V− as an unknown. Note that we also silently assumed
these homomorphicity properties when we did not introduce 32 different values of the vertex
depending on the strand orientations.

Homomorphicity of the (annular) unzip operation leads to an equation for V , which we
are going to refer to as “unitarity”. This is illustrated in the figure below. Recall that A1

and A2 denote the adjoint (direction switch) operation on strand 1 and 2, respectively.

u =

u ◦ Zw Zw

1V · A1A2(V )

Reading off the equation, we have

V · A1A2(V ) = 1. (12)

u

u ◦ Zw
Z

w

V C(12) C1C2

Homomorphicity of the disk unzip leads to an equation for C which
we will refer to as the “cap equation”. The translation from homo-
morphicity to equation is shown in the figure on the right. C, as we
introduced before, denotes the Z-value of the cap. Hence, the cap
equation reads

V 12C(12) = C1C2 in Asw( 2) (13)

The homomorphicity of deleting long strands does not lead to an equation on its own,
however it was used to prove the uniqueness of R (Theorem 3.30).

To summarize, we have reduced the problem of finding a homomorphic expansion Z to
finding the Z-values of the (positive) vertex and the cap, denoted V and C, subject to three
equations: the “hard Reidemeister 4” equation (11); “unitarity of V” equation (12); and the
“cap equation” (13).

4.4. The equivalence with the Alekseev-Torossian equations. First let us recall Alek-
seev and Torossian’s formulation of the generalized Kashiwara-Vergne problem (see [AT,
Section 5.3]):
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Generalized KV problem: Find an element F ∈ TAut2 with the properties

F (x+ y) = log(exey), and j(F ) ∈ im(δ̃). (14)

Here δ̃ : tr1 → tr2 is defined by (δ̃a)(x, y) = a(x)+a(y)−a(log(exey)), where tr2 is generated
by cyclic words in the letters x and y. (See [AT], Equation (8)). Note that an element of tr1
is a power series in one variable with no constant term. In other words, the second condition
says that there exists a ∈ tr1 such that jF = a(x) + a(y)− a(log(exey)).
Proof of Theorem 4.9. We have reduced the problem of finding a homomorphic expansion to
finding group-like solutions V and C to the hard Reidemeister 4 equation (11), the unitarity
equation (12), and the cap equation (13).

Suppose we have found such solutions and write V = ebeuD, where b ∈ trs2, D ∈ tder2⊕a2,
and where u is the map u : tder2 → Asw(↑2) which plants the head of a tree above all of its
tails, as introduced in Section 3.2. V can be written in this form without loss of generality
because wheels can always be commuted to the bottom of a diagram (at the possible cost
of more wheels). Furthermore, V is group-like and hence it can be written in exponential
form. Similarly, write C = ec with c ∈ tr

s
1.

Note that u(a2) is central in Asw(↑2) and that replacing a solution (V, C) by (eu(a)V, C)
for any a ∈ a2 does not interfere with any of the equations (11), (12) or (13). Hence we may
assume that D does not contain any single arrows, that is, D ∈ tder2. Also, a solution (V, C)
in Asw can be lifted to a solution in Aw by simply setting the degree one terms of b and c
to be zero. It is easy to check that this b ∈ tr2 and c ∈ tr1 along with D still satisfy the
equations. (In fact, in Aw (12) and (13) respectively imply that b is zero in degree 1, and
that the degree 1 term of c is arbitrary, so we may as well assume it to be zero.) In light of
this we declare that b ∈ tr2 and c ∈ tr1.

The hard Reidemeister 4 equation (11) reads V 12R(12)3 = R23R13V 12. Denote the arrow
from strand 1 to strand 3 by x, and the arrow from strand 2 to strand 3 by y. Substituting
the known value for R and rearranging, we get

ebeuDex+ye−uDe−b = eyex.

Equivalently, euDex+ye−uD = e−beyexeb. Now on the right side there are only tails on the first
two strands, hence eb commutes with eyex, so e−beb cancels. Taking logarithm of both sides
we obtain euD(x + y)e−uD = log eyex. Now for notational alignment with [AT] we switch
strands 1 and 2, which exchanges x and y so we obtain:

euD
21

(x+ y)e−uD21

= log exey. (15)

The unitarity of V (Equation (12)) translates to 1 = ebeuD(ebeuD)∗, where ∗ denotes the
adjoint map (Definition 3.26). Note that the adjoint switches the order of a product and

acts trivially on wheels. Also, euD(euD)∗ = J(eD) = ej(e
D), by Proposition 3.27. So we have

1 = ebej(e
D)eb. Multiplying by e−b on the right and by eb on the left, we get 1 = e2bej(e

D),
and again by switching strand 1 and 2 we arrive at

1 = e2b
21

ej(e
D21

). (16)

As for the cap equation, if C1 = ec(x) and C2 = ec(y), then C12 = ec(x+y). Note that wheels
on different strands commute, hence ec(x)ec(y) = ec(x)+c(y), so the cap equation reads

ebeuDec(x+y) = ec(x)+c(y).
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As this equation lives in the space of arrow diagrams on two capped strands, we can multiply
the left side on the right by e−uD: uD has its head at the top, so it is 0 by the Cap relation,
hence euD = 1 near the cap. Hence,

ebeuDec(x+y)e−uD = ec(x)+c(y).

σ

On the right side of the equation above
euDec(x+y)e−uD reminds us of Equation (15), however
we cannot use (15) directly as we are working in a
different space now. In particular, x there meant an
arrow from strand 1 to strand 3, while here it means
a one-wheel on (capped) strand 1, and similarly for
y. Fortunately, there is a map σ : Asw(↑3) → Asw( 2), where σ “closes the third strand and
turns it into a chord (or internal) strand, and caps the first two strands”, as shown on the

right. This map is well defined (in fact, it kills almost all relations, and turns one
−−−→
STU into

an
−−−→
IHX). Under this map, using our abusive notation, σ(x) = x and σ(y) = y.
Now we can apply Equation (15) to get euDec(x+y)e−uD = ec(log e

yex). Substituting this into
the cap equation we obtain ebec(log e

yex) = ec(x)+c(y), which, using that tails commute, implies
b = c(x) + c(y)− c(log eyex). Switching strands 1 and 2, we obtain

b21 = c(x) + c(y)− c(log exey) (17)

In summary, we can use (V, C) to produce F := eD
21
(sorry15) and a := −2c which satisfy

the Alekseev-Torossian equations (14), as follows: eD
21

acts on lie2 by conjugation by euD
21
,

so the first part of (14) is implied by (15). The second half of (14) is true due to (16) and
(17).

On the other hand, suppose that we have found F ∈ TAut2 and a ∈ tr1 satisfying (14).

Then set D21 := logF , b21 := −j(eD
21

)
2

, and c ∈ δ̃−1(b21), in particular c = −a
2
works. Then

V = ebeuD and C = ec satisfy the equations for homomorphic expansions (11), (12) and
(13).

Furthermore, the two maps between solutions of the KV problem and homomorphic ex-
pansions for wTF o defined in the last two paragraphs are obviously inverses of each other,
and hence they provide a bijection between these sets as stated. �

4.5. The wen. A topological feature of w-tangled foams which we excluded from the the-
ory so far is the wen w. The wen is a Klein bottle cut apart (as mentioned in [WKO1,
Section 2.5.4]); in other words it amounts to changing the 2D orientation of a tube, as shown
in the picture below:

15We apologize for the annoying 2 ↔ 1 transposition in this equation, which makes some later equations,
especially (22), uglier than they could have been. There is no depth here, just mis-matching conventions
between us and Alekseev-Torossian.
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w =

In this section we study the circuit algebra of w-Tangled Foams with the wen included as a
generator, and denote this space by wTF . The wen is also added to the circuit algebra of
skeleta. We will find that homomorphic expansions for wTF are in bijection with solutions
to the KV problem with “even Duflo function”, as explained below.

4.5.1. The relations and auxiliary operations of wTF . Adding the wen as a generator means
we have to impose additional relations involving the wen to keep our topological heuristics
intact, as follows:

The interaction of a wen and a crossing is described by the following relation (cf. [WKO1,
Section 2.5.4]):

yet

A B A B
A B A B

==
w

w

w

w

To explain this relation note that in flying ring language, a wen is a ring that flips over.
It does not matter whether ring B flips first and then flies through ring A or vice versa.
However, the movies in which ring A first flips and then ring B flies through it, or B flies
through A first and then A flips differ in the fly-through direction of B through A, which is
cancelled by virtual crossings, as in the figure above. We will refer to these relations as the
Flip Relations, and abbreviate them by FR.

A double flip is homotopic to no flip, in other words two consecutive wens equal no wen.
Let us denote this relation by W 2, for Wen squared. Note that this relation explains why
there are no “left and right wens”.

w
A cap can slide through a wen, hence a capped wen disappears,

as shown on the right, to be denoted CW.
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The last wen relation describes the interaction of wens and ver-
tices. Recall that there are four types of vertices with the same
strand orientation: among the bottom two bands (in the pictures
on the left) there is a non-filled and a filled band (corresponding to
over/under in the strand diagrams), meaning the “large” ring and
the “small” one which flies into it before they merge. Furthermore,
there is a top and a bottom band (among these bottom two, with
apologies for the ambiguity in overusing the word bottom): this
denotes the fly-in direction (flying in from below or from above).
Conjugating a vertex by three wens switches the top and bottom
bands, as shown in the figure on the left: if both rings flip, then
merge, and then the merged ring flips again, this is homotopic to
no flips, except the fly-in direction (from below or from above) has
changed. We are going to denote this relation by TV, for “twisted
vertex”.

The auxiliary operations are the same as for wTF o: orientation switches, adjoints, deletion
of long linear strands, cap unzips and unzips16.

Definition 4.10. Summarizing the above, we have

wTF = CA

〈

,, , , ,

w

∣

∣

∣

∣

R1s, R2, R3, R4, OC, CP,
FR, W 2, CW, TV

∣

∣

∣

∣

Se, Ae, ue, de

〉

.

4.5.2. The Associated Graded Structure. The associated graded structure of wTF (still de-
noted Asw) is the same as the associated graded for wTF o but with the wen added as a
generator (a degree 0 skeleton feature), and with extra relations describing the behaviour of
the wen. Of course, the relations describing the interaction of wens with the other skeleton

features (W 2, TV, and CW) still apply, as well as the old
−→
4T , TC, VI, CP, and RI relations.

In addition, the Flip Relations FR imply that wens “commute” with arrow heads, but
“anti-commute” with tails. We also call these FR relations:

,w w w w= −but .=FR:

That is,

Asw = CA

〈

, , ,

w
,

∣

∣

∣

∣

W 2, TW, CW,
−→
4T , TC,

VI, CP, RI, FR

∣

∣

∣

∣

Se, Ae, ue, de

〉

.

4.5.3. The homomorphic expansion. The goal of this section is to prove that there exists a
homomorphic expansion Z for wTF . This involves solving a similar system of equations to
Section 4.3, but with an added unknown for the value of the wen, as well as added equations
arising from the wen relations. Let W ∈ Asw(↑1) denote the Z-value of the wen, and let us
agree that the arrow diagram W always appears just above the wen on the skeleton. In fact,
we are going to show that W = 1 for any homomorphic expansion.

16We need not specify how to unzip an edge e that carries a wen. To unzip such e, first use the TV
relation to slide the wen off e.
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As two consecutive wens on the skeleton cancel, we obtain the equation shown in the
picture and explained below:

w

w
w w

= =

W

W

W

W

W

W

The Z-value of two consecutive wens on a strand is a skeleton wen followed byW followed by
a skeleton wen and another W . Sliding the bottom W through the skeleton wen “multiplies
each tail by (−1)”. Let us denote this operation by “bar”, i.e. for an arrow diagram D,
D = D · (−1)# of tails in D. Cancelling the two skeleton wens, we obtain WW = 1. Recall
that Asw(↑1) consists only of wheels and single arrows. Since we are looking for a group-like
Z, we can assume that W = ew and WW = 1 means that w is a linear combination of odd
wheels and possibly single arrows.

Now recall the Twisted Vertex relation of Section 4.5.1. Note that the Z-value of the
negative vertex on the right hand side of the relation can be written as S1S2A1A2(V ) = V
(cf Remark 4.3). On the other hand, applying Z to the left hand side of the relation we
obtain:

w w

ww

= =

= 1ww
V

V
V

W W
W W

u(W )

W W

u(W )

W W

W
W

Hence, using thatW =W−1, the twisted vertex relation induces the equationW 1W 2 = W (12)

in Asw(↑2). One can verify degree by degree, using thatW can be written as an exponential,
that the only solution to this equation is W = 1.

We have yet to verify that the CW relation (i.e., a cap can slide through a wen) can be
satisfied with W = 1. Keep in mind that the wen as a skeleton feature anti-commutes with
tails (this is the Flip Relation of Section 4.2.1). The value of the cap C is a combination of
only wheels (Lemma 4.6), hence the CW relation translates to the equation C = C, which
is equivalent to saying that C consists only of even wheels.

The fact that Z can be chosen to have this property follows from Proposition 6.2 of [AT]:
the value of the cap is C = ec, where c can be set to c = −a

2
, as explained in the proof

of Theorem 4.9. Here a is such that δ̃(a) = jF as in Equation (14). A power series f so
that a = tr f (where tr is the trace which turns words into cyclic words) is called the Duflo
function of F . In Proposition 6.2 Alekseev and Torossian show that the even part of f is
1
2
log(ex/2−e−x/2)

x
, and that for any f with this even part there is a corresponding solution F of

the generalized KV problem. In particular, f can be assumed to be even, namely the power
series above, and hence it can be guaranteed that C consists of even wheels only. Thus we
have proven the following:
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Theorem 4.11. Group-like homomorphic expansions Z : wTF → Asw (with no local arrows
in the value of V ) are in one-to one correspondence with solutions to the KV problem with
an even Duflo function. �

4.6. Interlude: u-Knotted Trivalent Graphs. The “usual”, or classical knot-theoretical
objects corresponding to wTF are loosely speaking Knotted Trivalent Graphs, or KTGs. We
give a brief introduction/review of this structure before studying the relationship between
their homomorphic expansions and homomorphic expansions for wTF . The last goal of
this paper is to show that the topological relationship between the two spaces explains the
relationship between the KV problem and Drinfel’d associators.

A trivalent graph is a graph with three edges meeting at each vertex, equipped with a
cyclic orientation of the three half-edges at each vertex. KTGs are framed embeddings of
trivalent graphs into R3, regarded up to isotopies. The skeleton of a KTG is the trivalent
graph (as a combinatorial object) behind it. For a detailed introduction to KTGs see for
example [BND]. Here we only recall the most important facts. The reader might recall that
in Section 3, the w-knot section, of [WKO1] we only dealt with long w-knots, as the w-theory
of round knots is essentially trivial (see [WKO1, Theorem 3.17]). A similar issue arises with
“w-knotted trivalent graphs”. Hence, the space we are really interested in is “long KTGs”,
meaning, trivalent tangles with 1 or 2 ends.

ST

,

ST

,

T S T

S

γ e ue(γ)

stick-on e

insert in e

unzip e

e

e

Long KTGs form an algebraic struc-
ture with operations as follows. Orien-
tation switch reverses the orientation
of a specified edge. Edge unzip doubles
a specified edge as shown on the right.
Tangle insertion is inserting a small
copy of a (1, 1)-tangle S into the mid-
dle of some specified strand of a tangle
T , as shown in the second row on the
right (tangle composition is a special
case of this). The stick-on operation
“sticks a 1-tangle S onto a specified
edge of another tangle T”, as shown.
(In the figures T is a 2-tangle, but this
is irrelevant.) Disjoint union of two 1-tangles produces a 2-tangle. Insertion, disjoint union
and stick-on are a slightly weaker set of operations than the connected sum of [BND].

The associated graded structure of the algebraic structure of long KTGs is the graded
space Au of chord diagrams on trivalent graph skeleta, modulo the 4T and vertex invariance
(VI) relations. The induced operations on Au are as expected: orientation switch multiplies
a chord diagram by (−1) to the number of chord endings on the edge. The edge unzip ue
maps a chord diagram with k chord endings on the edge e to a sum of 2k diagrams where
each chord ending has a choice between the two daughter edges. Finally, tangle insertion,
stick-on and disjoint union induces the insertion, sticking on and disjoint union of chord
diagrams, respectively.
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u(ν1/2)

ν−1/2 ν−1/2

Zold(γ) Zold(u(γ))

In [BND] the authors prove that there is no homomorphic ex-
pansion for KTGs. This theorem, as well as the proof, applies
to long KTGs with slight modifications. However there is a well-
known — and nearly homomorphic — expansion constructed by
extending the Kontsevich integral to KTGs and renormalizing at
the vertices. There are several constructions that do this ([MO],
[CL], [Da]). For now, let us denote any one of these expansions by
Zold. All the Zold are almost homomorphic: they intertwine every
operation except for edge unzip with their chord-diagrammatic
counterparts; but commutativity with unzip fails by a controlled
amount, as shown on the right. Here ν denotes the “invariant of the unknot”, the value of
which was conjectured in [BGRT] and proven in [BLT].

In [BND] the authors fix this anomaly by slightly changing the space of KTGs and adding
some extra combinatorics (“dots” on the edges), and construct a homomorphic expansion for
this new space by a slight adjustment of Zold. Here we are going to use a similar but different
adjustment of the space of trivalent 1- and 2-tangles. Namely we break the symmetry of the
vertices and restrict the set of allowed unzips.

Definition 4.12. A “signed KTG”, denoted sKTG, is a trivalent oriented 1- or 2-tangle
embedded in R3 with a cyclic orientation of edges meeting at each vertex, and in addition each
vertex is equipped with a sign and one of the three incident edges is marked as distinguished
(sometimes denoted by a thicker line). Our pictorial convention will be that a vertex drawn
in a “

Y

” shape with all strands oriented up and the top strand distinguished is always
positive and a vertex drawn in a “Y ” shape with strands oriented up and the bottom strand
distinguished is always negative (see Figure 18).

T S T

S
,

,

T S T

S

stick-on +

stick-on
−

The algebraic structure sKTG has one kind
of objects for each skeleton (a skeleton is
a uni-trivalent graph with signed vertices
but no embedding), as well as several oper-
ations: orientation switch, edge unzip, tan-
gle insertion, disjoint union of 1-tangles, and
stick-on. Orientation switch of either of the
non-distinguished strands changes the sign
of the vertex, switching the orientation of
the distinguished strand does not. Unzip of
an edge is only allowed if the edge is distinguished at both of its ends and the vertices at
either end are of opposite signs. The stick-on operation can be done in either one of the two
ways shown on the right (i.e., the stuck-on edge can be attached at a vertex of either sign,
but it can not become the distinguished edge of that vertex).

To consider expansions of sKTG, and ultimately the compatibility of these with Zw, we
first note that sKTG is finitely generated (and therefore any expansion Zu is determined by
its values on finitely many generators). The proof of this is not hard but somewhat lengthy,
so we postpone it to Section 5.2.

Proposition 4.13. The algebraic structure sKTG is finitely generated by the following list
of elements:
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right

twist

left

twist
strand

+
+

−
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right

associator
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associator

+

−
−

+
,

bubble balloon noose

+ ,
−
,

Note that we ignore strand orientations for simplicity in the statement of this proposition;
this is not a problem as orientation switches are allowed in sKTG without restriction.

4.6.1. Homomorphic expansions for sKTG. Suppose that Zu : sKTG→ Au is a homomorphic
expansion. We hope to determine the value of Zu on each of the generators.

u

The value of Zu on the single strand is an element of Au(↑) whose square
is itself, hence it is 1. The value of the bubble is an element x ∈ Au(↑2), as
all chords can be pushed to the “bubble” part using the VI relation. Two
bubbles can be composed and unzipped to produce a single bubble (see on
the right), hence we have x2 = x, which implies x = 1 in Au(↑2).

Recall that a Drinfel’d associator is a group-like element Φ ∈ Au(↑3) along with a group-
like element Ru ∈ Au(↑2) satisfying the so-called pentagon and positive and negative hexagon
equations, as well as a non-degeneracy and mirror skew-symmetry property. For a detailed
explanation see Section 4 of [BND]; associators were first defined in [Dr2]. We claim that
the Zu-value Φ of the right associator, along with the value Ru of the right twist forms a
Drinfel’d associator pair. The proof of this statement is the same as the proof of Theorem
4.2 of [BND], with minor modifications (making heavy use of the assumption that Zu is
homomorphic). It is easy to check by composition and unzips that the value of the left
associator and the left twist are Φ−1 and (Ru)−1, respectively. Note that if Φ is required to
be a horizontal chord associator (i.e., all the chords of Φ are horizontal on three strands)
then Ru is forced to be ec/2 where c denotes a single chord. Note that the reverse is not
true: there exist non-horizontal chord associators Φ that satisfy the hexagon equations with
Ru = ec/2.

−1

n · b = Φ

Let b and n denote the Zu-values of the balloon and the noose,
respectively. Note that using the V I relation all chord endings can
be pushed to the “looped” strands, so b and n live in Au(↑), as seen in
Figure 16. The argument in that figure shows that n · b is the inverse
in Au(↑) of “an associator on a squiggly strand”, as shown on the
right. In Figure 16 we start with the sKTG on the top left and either apply Zu followed by
unzipping the edges marked by stars, or first unzip the same edges and then apply Zu. Since
Zu is homomorphic, the two results in the bottom right corner must agree. (Note that two
of the four unzips we perform are “illegal”, as the strand directions can’t match. However,
it is easy to get around this issue by inserting small bubbles at the top of the balloon and
the bottom of the noose, and switching the appropriate edge orientations before and after
the unzips. The Zu-value of a bubble is 1, hence this will not effect the computation and so
we ignore the issue for simplicity.)

In addition, it follows from Theorem 4.2 of [BND] via deleting two edges that the inverse
of an “associator on a squiggly strand” is ν, the invariant of the unknot. To summarize, we
have proven the following:
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Zu

n n

b b

Φ
Φ

Figure 16. Unzipping a noose and a balloon to a squiggle.

Lemma 4.14. If Zu is a homomorphic expansion then the Zu values of the strand and
the bubble are 1, the values of the right associator and right twist form an associator pair
(Φ, Ru), and the values of the left twist and left associator are inverses of these. With n and
b denoting the value of the noose and the balloon, respectively, and ν being the invariant of
the unknot, we have n · b = ν in Au(↑).

The natural question to ask is whether any triple (Φ, Ru, n) gives rise to a homomorphic
expansion. We don’t know whether this is true, but we do know that any pair (Φ, Ru) gives
rise to a “nearly homomorphic” expansion of KTGs [MO, CL, Da], and we can construct a
homomorphic expansion for sKTG from any of these (as shown below). However, all of these
expansions take the same specific value on the noose and the balloon (also see below). We
don’t know whether there really is a one parameter family of homomorphic expansions Zu

for each choice of (Φ, Ru) or if we are simply missing a relation.

T TZold := ν−1 · Zold

We now construct explicit homomorphic ex-
pansions Zu : sKTG→ Au from any Zold (where
Zold stands for an extension to KTGs of the
Kontsevich integral) as follows. First of all we
need to interpret Zold as an invariant of 2-tangles. This can be done by connecting the top
and bottom ends by a non-interacting long strand followed by a normalization, as shown
on the right. By “multiplying by ν−1” we mean that after computing Zold we insert ν−1

on the long strand (recall that ν is the “invariant of the unknot”). We interpret Zold of a
1-tangle as follows: stick the 1-tangle onto a single strand to obtain a 2-tangle, then proceed
as above. The result will only have chords on the 1-tangle (using that the extensions of the
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Figure 17. Computing the Zold value of the noose. The third step uses that the Kontsevich

integral of KTGs is homomorphic with respect to the “connected sum” operation and that

the value of the unknot is ν (see [BND] for an explanation of both of these facts).

Kontsevich Integral are homomorphic with respect to “connected sums”), so we define the
result to be the value of Zold on the 1-tangle. As an example, we compute the value of Zold

for the noose in Figure 17 (note that the computation for the balloon is the same).

+

e
c/4

ν
−1/4

ν
1/4

ν
−1/4

− −

e
−c/4

ν
1/4

ν
−1/4

ν
−1/4

+

Figure 18. Normalizations for Zu at the vertices.

b =

n = e−c/4

ν1/2

ec/4

ν1/2

Now to construct a homomorphic Zu from Zold we add normalizations near
the vertices, as in Figure 18, where c denotes a single chord. Checking that
Zu is a homomorphic expansion is a simple calculation using the almost ho-
momorphicity of Zold, which we leave to the reader. The reader can also verify
that Zu of the strand and the bubble is 1 as it should be. Zu of the right twist
is ec/2 and Zu of the right associator is a Drinfel’d associator Φ (note that Φ
depends on which Zold was used). From the calculation of Figure 17 it follows
that the Zu value of the balloon and the noose (for any Zold) are as shown on the right, and
indeed n · b = ν.

4.7. The relationship between sKTG and wTF . We move on to the question of compat-
ibility between the homomorphic expansions Zu and Zw (from now on we are going to refer
to the homomorphic expansion of wTF — called Z in the previous section — as Zw to avoid
confusion).

There is a map a : sKTG→ wTF , given by interpreting sKTG diagrams as wTF diagrams.
In particular, positive vertices (of edge orientations as shown in Figure 18) are interpreted as

the positive wTF vertex and negative vertices as the negative vertex . (The map a can
also be interpreted topologically as Satoh’s tubing map.) The induced map α : Au → Asw

is as defined in Section 3.3, that is, α maps each chord to the sum of its two possible
orientations. Hence we can ask whether the two expansions are compatible (or can be
chosen to be compatible), which takes us to the main result of this section:
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sKTG

Zu

��

a // wTF

Zw

��
Au α // Asw

(18)

Theorem 4.15. Let Zu be a homomorphic expansion for sKTG
with the properties that Φ is a horizontal chord associator and
n = e−c/4ν1/2 in the sense of Section 4.6.1.17 Then there ex-
ists a homomorphic expansion Zw for wTF compatible with
Zu in the sense that the square on the right commutes.

Furthermore, such Zw are in one to one correspondence18 with “symmetric solutions of the
KV problem” satisfying the KV equations (14), the “twist equation” (20) and the associator
equation (22).

Before moving on to the proof let us state and prove the following Lemma, to be used
repeatedly in the proof of the theorem.

Lemma 4.16. If a and b are group-like elements in Asw(↑n), then a = b if and only if
π(a) = π(b) and aa∗ = bb∗. Here π is the projection induced by π : Pw(↑n) → tdern ⊕an

(see Section 3.2), and ∗ refers to the adjoint map of Definition 3.26. In the notation of this
section ∗ is applying the adjoint A on all strands.

Proof. Write a = eweuD and b = ew
′

euD
′

, where w ∈ trn, D ∈ tdern ⊕an and
u : tdern ⊕an → Pn is the “upper” map of Section 3.2. Assume that π(a) = π(b) and
aa∗ = bb∗. Since π(a) = eD and π(b) = eD

′

, we conclude that D = D′. Now we compute
aa∗ = eweuDe−lDew = ewej(D)ew, where j : tdern → trn is the map defined in Section 5.1 of
[AT] and discussed in 3.27 of this paper. Now note that both w and j(D) are elements of trn,
hence they commute, so aa∗ = e2w+j(D). Thus, aa∗ = bb∗ means that e2w+j(D) = e2w

′+j(D),
which implies that w = w′ and a = b. �

Proof of Theorem 4.15. In addition to being a homomorphic expansion for wTF , Zw has
to satisfy an the added condition of being compatible with Zu. Since sKTG is finitely
generated, this translates to one additional equation for each generator of sKTG, some of
which are automatically satisfied. To deal with the others, we use the machinery established
in the previous sections to translate these equations to conditions on F , and they turn out
to be the properties studied in [AT] which link solutions of the KV problem with Drinfel’d
associators.

To start, note that for the single strand and the bubble the commutativity of the square
(18) is satisfied with any Zw: both the Zu and Zw values are 1 (note that the Zw value of
the bubble is 1 due to the unitarity (12) of Zw). Each of the other generators will require
more study.

Commutativity of (18) for the twists. Recall that the Zu-value of the right twist (for a
Zu with horizontal chord Φ) is Ru = ec/2; and note that its Zw-value is V −1RV 21, where
R = ea12 is the Zw-value of the crossing (and a12 is a single arrow pointing from strand 1 to
strand 2). Hence the commutativity of (18) for the right twist is equivalent to the “Twist

Equation” α(Ru) = V −1RV 21. By definition of α, α(Ru) = e
1
2
(a12+a21), where a12 and a21 are

17It will become apparent that in the proof we only use slightly weaker but less aesthetic conditions on
Zu.

18An even nicer theorem would be a classification of homomorphic expansions for the combined algebraic

structure
(

sKTG
a

−→ wTF
)

in terms of solutions of the KV problem. The two obstacles to this are clarifying

whether there is a free choice of n for Zu, and — probably much harder — how much of the horizontal chord
condition is necessary for a compatible Zw to exist.
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Using V I to push to

the middle three strands.

V

V

V−

V−

Figure 19. The Zw-value of the right associator.

single arrows pointing from strand 1 to 2 and 2 to 1, respectively. Hence we have

e
1
2
(a12+a21) = V −1RV 21. (19)

To translate this to the language of [AT], we use Lemma 4.16, which implies that it is enough
for V to satisfy the Twist Equation “on tree level” (i.e., after applying π), and for which the
adjoint condition of the Lemma holds.

We first prove that the adjoint condition holds for any homomorphic expansion of wTF .
Multiplying the left hand side of the Twist Equation by its adjoint, we get

e
1
2
(a12+a21)(e

1
2
(a12+a21))∗ = e

1
2
(a12+a21)e−

1
2
(a12+a21) = 1.

As for the right hand side, we have to compute V −1RV 21(V 21)∗R∗(V −1)∗. Since V is unitary
(Equation (12)), V V ∗ = V · A1A2(V ) = 1. Now R = ea12 , so R∗ = e−a12 = R−1, hence the
expression on the right hand side also simplifies to 1, as needed.

As for the “tree level” of the Twist Equation, recall that in Section 4.3 we used Alekseev
and Torossian’s solution F ∈ TAut2 to the Kashiwara–Vergne equations [AT] to find solutions

V to equations (11),(12) and (13). We produced V from F by setting F = eD
21

with

D ∈ tder
s
2, b := −j(F )

2
∈ tr2 and V := ebeuD, so F is “the tree part” of V , up to re-

numbering strands. Hence, the tree level Twist Equation translates to a new equation for F .
Substituting V = ebeuD into the Twist Equation we obtain e

1
2
(a12+a21) = e−uDe−bea12eb

21
euD

21
,

and applying π, we get

e
1
2
(a12+a21) = (F 21)−1ea12F. (20)

In [AT] the solutions F of the KV equations which also satisfy this equation are called
“symmetric solutions of the Kashiwara-Vergne problem” discussed in Sections 8.2 and 8.3.
(Note that in [AT] R denotes ea21).

Commutativity of (18) for the associators. Recall that the Zu value of the right associator
is a Drinfel’d associator Φ ∈ Au(↑3); for the Z

w value see Figure 19. Hence the new condition
on V is the following:

α(Φ) = V
(12)3
− V 12

− V 23V 1(23) in Asw(↑3) (21)

Again we treat the “tree and wheel parts” separately using Lemma 4.16. As Φ is by
definition group-like, let us denote Φ =: eφ. We first verify that the “wheel part” or adjoint
condition of the Lemma holds. Starting with the right hand side of Equation (21), the
unitarity V V ∗ = 1 of V implies that

V
(12)3
− V 12

− V 23V 1(23)(V 1(23))∗(V 23)∗(V 12
− )∗(V

(12)3
− )∗ = 1.
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For the left hand side of (21) we need to show that eα(φ)(eα(φ))∗ = 1 as well, and this is
true for any horizontal chord associator. Indeed, restricted to the α-images of horizontal
chords ∗ is multiplication by −1, and as it is an anti-Lie morphism, this fact extends to the
Lie algebra generated by α-images of horizontal chords. Hence eα(φ)(eα(φ))∗ = eα(φ)eα(φ)

∗

=
eα(φ)e−α(φ) = 1.

On to the tree part, applying π to Equation (21) and keeping in mind that V− = V −1 by
the unitarity of V , we obtain

eπα(φ) = (F 3(12))−1(F 21)−1F 32F (23)1 = e−D(12)3

e−D12

eD
23

eD
1(23)

in SAut3 := exp(sder3) ⊂ TAut3 . (22)

This is Equation (26) of [AT], up to re-numbering strands 1 and 2 as 2 and 119. The following
fact from [AT] (their Theorem 7.5, Propositions 9.2 and 9.3 combined) implies that there is
a solution F to the KV equations (14) which also satisfies (20) and (22).

Fact 4.17. If Φ′ = eφ
′

is an associator in SAut3 so that j(Φ′) = 020 then Equation (22) has

a solution F = eD
21

which is also a solution to the KV equations, and all such solutions are
symmetric (i.e. verify the Twist Equation (20)). �

To use this Fact, we need to show that Φ′ := πα(Φ) is an associator in SAut3 and that
j(Φ′) = j(πα(Φ)) = 0. The latter is the unitarity of Φ which is already proven. The former
follows from the fact that Φ is an associator and the fact (Theorem 3.28) that the image
of πα is contained in sder (ignoring degree 1 terms, which are not present in an associator
anyway).

In summary, the condition of the Fact are satisfied and so there exists a solution F which
in turn induces a Zw which is compatible with Zu for the strand, the bubble, the twists and
the associators. That is, all generators of sKTG except possibly the balloon and the noose.
As the last step of the proof of Theorem 4.15 we show that any such Zw also automatically
make (18) commutative for the balloon and the noose.

=Zw
S1(V )

Commutativity of (18) for the balloon and the noose. Since we
know the Zu-values B and n of the balloon and the noose, we start
by computing Zw of the noose. Zw assigns a V value to the vertex
with the first strand orientation switched as shown in the figure on
the right. The balloon is the same, except with a negative vertex and the second strand
reversed. Hence what we need to show is that the two equations below hold:

==S1(V ) S2(V−)
α(ν)1/2

e
−DA

2

e
DA

2

α(ν)1/2

19Note that in [AT] “Φ′ is an associator” means that Φ′ satisfies the pentagon equation, mirror skew-
symmetry, and positive and negative hexagon equations in the space SAut3. These equations are stated in
[AT] as equations (25), (29), (30), and (31), and the hexagon equations are stated with strands 1 and 2

re-named to 2 and 1 as compared to [Dr2] and [BND]. This is consistent with F = eD
21

.
20The condition j(φ′) = 0 is equivalent to the condition Φ ∈ KRV 0

3 in [AT]. The relevant definitions in
[AT] can be found in Remark 4.2 and at the bottom of page 434 (before Section 5.2).
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Zw

Zw u

u

C

S1(V )

C

S2(V−)

CS(C)

S1(V )

CS(C)

S2(V−)

Figure 20. The proof of Equation (24). Note that the unzips are “illegal”, as the strand

directions don’t match. This can be fixed by inserting a small bubble at the bottom of the

noose and doing a number of orientation switches. As this doesn’t change the result or the

main argument, we suppress the issue for simplicity. Equation (24) is obtained from this

result by multiplying by S(C)−1 on the bottom and by C−1 on the top.

Let us denote the left hand side of the first equation above by nw and bw (the Zw value
of the noose and the balloon, respectively). We will start by proving that the product of
these two equations holds, namely that nwbw = α(ν). (We used that any local (small) arrow
diagram on a single strand is central in Asw(↑n), hence the cancellations.) This product
equation is satisfied due to an argument identical to that of Figure 16, but carried out in
wTF , and using that by the compatibility with associators, Zw of an associator is α(Φ).

What remains is to show that the noose and balloon equations hold individually. In light
of the results so far, it is sufficient to show that

nw = bw · e−DA , (23)

where DA stands for a single arrow on one strand (whose direction doesn’t matter due to the
RI relation. As stated in [WKO1, Theorem 3.15], Asw(↑1) is the polynomial algebra freely
generated by the arrow DA and wheels of degrees 2 and higher. Since V is group-like, nw

(resp. bw) is an exponential eA1 (resp. eA2) with A1, A2 ∈ Asw(↑1). We want to show that
eA1 = eA2 · e−DA, equivalently that A1 = A2 −DA.

In degree 1, this can be done by explicit verification. Let A≥2
1 and A≥2

2 denote the degree
2 and higher parts of A1 and A2, respectively. We claim that capping the strand at both its

top and its bottom takes eA1 to eA
≥2
1 , and similarly eA2 to eA

≥2
2 . (In other words, capping

kills arrows but leaves wheels un-changed.) This can be proven similarly to the proof of
Lemma 4.6, but using

F ′ :=
∞
∑

k1,k2=0

(−1)k1+k2

k1!k2!
Dk1+k2

A Sk1
L S

k2
R

in place of F in the proof. What we need to prove, then, is the following equality, and the
proof is shown in Figure 20.

= .S2(V−)S1(V ) (24)

This concludes the proof of Theorem 4.15. �
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Recall from Section 3.3 that there is no commutative square linking Zu : uT → Au and
Zw : wT → Asw, for the simple reason that the Kontsevich integral for tangles Zu is not
canonical, but depends on a choice of parenthesizations for the “bottom” and the “top”
strands of a tangle T . Yet given such choices, a tangle T can be “closed up with trees”
as within the proof of Proposition 4.13 (see Section 5) into an sKTG which we will denote
G. For G a commutativity statement does hold as we have just proven. The Zu and Zw

invariants of T and of G differ only by a number of vertex-normalizations and vertex-values
on skeleton-trees at the bottom or at the top of G, and using VI, these values can slide so they
are placed on the original skeleton of T . This is summarized as the following proposition:

Proposition 4.18. Let n and n′ be natural numbers. Given choices c and and c′ of paren-
thesizations of n and n′ strands respectively, there exists invertible elements C ∈ Asw(↑n)
and C ′ ∈ Asw(↑n′) so that for any u-tangle T with n “bottom” ends and n′ “top” ends we
have

αZu
c,c′(T ) = C−1Zw(aT )C ′,

where Zu
c,c′ denotes the usual Kontsevich integral of T with bottom and top parenthesizations

c and c′.

For u-braids the above proposition may be stated with c = c′ and then C and C ′ are the
same.

5. Odds and Ends

5.1. Motivation for circuit algebras: electronic circuits. Electronic circuits are made
of “components” that can be wired together in many ways. On a logical level, we only care to
know which pin of which component is connected with which other pin of the same or other
component. On a logical level, we don’t really need to know how the wires between those
pins are embedded in space (see Figures 21 and 22). “Printed Circuit Boards” (PCBs) are
operators that make smaller components (“chips”) into bigger ones (“circuits”) — logically
speaking, a PCB is simply a set of “wiring instructions”, telling us which pins on which
components are made to connect (and again, we never care precisely how the wires are routed
provided they reach their intended destinations, and ever since the invention of multi-layered
PCBs, all conceivable topologies for wiring are actually realizable). PCBs can be composed
(think “plugging a graphics card onto a motherboard”); the result of a composition of PCBs,
logically speaking, is simply a larger PCB which takes a larger number of components as
inputs and outputs a larger circuit. Finally, it doesn’t matter if several PCB are connected
together and then the chips are placed on them, or if the chips are placed first and the PCBs
are connected later; the resulting overall circuit remains the same.

5.2. Proof of Proposition 4.13. We are going to ignore strand orientations throughout
this proof for simplicity. This is not an issue as orientation switches are allowed in sKTG
without restriction. We are also going to omit vertex signs from the pictures given the
pictorial convention stated in Section 4.6.

We need to prove that any sKTG (call it G) can be built from the generators listed in
the statement of the proposition, using sKTG operations. To show this, consider a Morse
drawing of G, that is, a planar projection of G with a height function so that all singularities
along the strands are Morse and so that every “feature” of the projection (local minima and
maxima, crossings and vertices) occurs at a different height.
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K

J

CP
Q

Q’

Figure 21. The J-K flip flop, a very basic memory cell, is an electronic

circuit that can be realized using 9 components — two triple-input “and”

gates, two standard “nor” gates, and 5 “junctions” in which 3 wires

connect (many engineers would not consider the junctions to be real

components, but we do). Note that the “crossing” in the middle of the

figure is merely a projection artifact and does not indicate an electrical

connection, and that electronically speaking, we need not specify how this crossing may be

implemented in R3. The J-K flip flop has 5 external connections (labelled J, K, CP, Q, and

Q’) and hence in the circuit algebra of computer parts, it lives in C5. In the directed circuit

algebra of computer parts it would be in C3,2 as it has 3 incoming wires (J, CP, and K) and

two outgoing wires (Q and Q’).

Figure 22. The circuit algebra product of 4 big black

components and 1 small black component carried out using

a green wiring diagram, is an even bigger component that

has many golden connections (at bottom). When plugged

into a yet bigger circuit, the CPU board of a laptop, our

circuit functions as 4,294,967,296 binary memory cells.

The idea in short is to decompose G into levels of this Morse drawing where at each level
only one “feature” occurs. The levels themselves are not sKTG’s, but we show that the
composition of the levels can be achieved by composing their “closed-up” sKTG versions
followed by some unzips. Each feature gives rise to a generator by “closing up” extra ends
at its top and bottom. We then show that we can construct each level using the generators
and the tangle insert operation.

So let us decompose G into a composition of trivalent tangles (“levels”), each of which
has one “feature” and (possibly) some straight vertical strands. Note that by isotopy we can
make sure that every level has strands ending at both its bottom and top, except for the
first or the last level in the case of 1-tangles. An example of level decomposition is shown in
the figure below. Note that the levels are generally not elements of sKTG (have too many
ends). However, we can turn each of them into a (1, 1)-tangle (or a 1-tangle in case of the
aforementioned top first or last levels) by “closing up” their tops and bottoms by arbitrary
trees. In the example below we show this for one level of the Morse-drawn sKTG containing
a crossing and two vertical strands.

1

2

3

4

5

6

3

Now we can compose the sKTG’s obtained from closing up each level. Each tree that we
used to close up the tops and bottoms of levels determines a “parenthesization” of the strand
endings. If these parenthesizations match on the top of each level with the bottom of the
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next, then we can recreate tangle composition of the levels by composing their closed versions
followed by a number of unzips performed on the connecting trees. This is illustrated in the
example below, for two consecutive levels of the sKTG of the previous example.

unzips

3

4

3

4

If the trees used to close up consecutive levels correspond to different parenthesizations,
then we can use insertion of the left and right associators (the 5th and 6th pictures of the
list of generators in the statement of the theorem) to change one parenthesization to match
the other. This is illustrated in the figure below.

insert
associator

unzip
these edges

unzips

So far we have shown that G can be assembled from closed versions of the levels in its
Morse drawing. The closed versions of the levels of G are simpler sKTG’s, and it remains to
show that these can be obtained from the generators using sKTG operations.

=close
up

Let us examine what each level might look like. First of all,
in the absence of any “features” a level might be a single strand,
in which case it is the first generator itself. Two parallel strands
when closed up become the “bubble”, as shown on the right.

Now suppose that a level consists of n parallel strands, and that the trees used to close
it up on the top and bottom are horizontal mirror images of each other, as shown below (if
not, then this can be achieved by associator insertions and unzips). We want to show that
this sKTG can be obtained from the generators using sKTG operations. Indeed, this can be
achieved by repeatedly inserting bubbles into a bubble, as shown:

close
up

=
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A level consisting of a single crossing becomes a left or right twist when closed up (de-
pending on the sign of the crossing). Similarly, a single vertex becomes a bubble. A single
minimum or maximum becomes a noose or a balloon, respectively.

It remains to see that the sKTG’s obtained when closing up simple features accompanied
by more through strands can be built from the generators. A minimum accompanied by
an extra strand gives rise to the sKTG obtained by sticking a noose onto a vertical strand
(similarly, a balloon for a maximum). In the case of all the other simple features and
for minima and maxima accompanied by more strands, we inserting the already generated
elements into nested bubbles (bubbles inserted into bubbles), as in the example shown below.
This completes the proof.

close
up

=

�

6. Glossary of notation

Greek letters, then Latin, then symbols:

δ Satoh’s tube map 3.4
∆ co-product 3.2
ι inclusion trn → Pw(↑n) 3.2
ν the invariant of the unknot 4.6
π the projection Pw(↑n) → an ⊕ tdern 3.2
φ log of an associator 4.6
Φ an associator 4.6
ψβ “operations” 2.1

an n-dimensional Abelian Lie algebra 3.2
A a candidate associated graded structure

2.3
Asv Dv mod 6T, RI 3.1

Asw Dw mod
−→
4T , TC, RI 3.1

Asw gradwTF o 4.2
Asw gradwTF 4.5.2
A(s)w Aw and/or Asw 4.2
Au chord diagrams mod rels for KTGs 4.6
Av Dv mod 6T 3.1
Aw Dw mod

−→
4T , TC 3.1

Aw gradwTF o without RI 4.2
A−(↑n) A− for pure n-tangles 3.2
Ae 1D orientation reversal 4.1.3
Ass associative words 3.2
Ass+ non-empty associative words 3.2

Bw
n n-coloured unitrivalent arrow

diagrams 3.2
C the invariant of a cap 4.3
CP the Cap-Pull relation 4.1.2, 4.2
CW Cap-Wen relations 4.5.1
c a chord in Au 4.6
der Lie-algebra derivations 3.2
Dv, Dw arrow diagrams for v/w-tangles 3.1
div the “divergence” 3.2
F a map Aw → Aw 4.2
F the main [AT] unknown 4.4
FR Flip Relations 4.5.1, 4.5.2
fil a filtered structure 2.3
I augmentation ideal 2.2
J a map TAutn → exp(trn) 3.2
j a map TAutn → trn 3.2
KTG Knotted Trivalent Graphs 4.6
lien free Lie algebra 3.2
l a map tdern → Pw(↑n) 3.2
O an “algebraic structure” 2.1
Pw
n primitives of Bw

n 3.2
P−(↑n) primitives of A−(↑n) 3.2
grad associated graded structure 2.2
R the invariant of a crossing 4.3
R4 a Reidemeister move for

foams/graphs 4.1.2
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sder special derivations 3.3
S the circuit algebra of skeletons 2.4
SAutn the group exp(sdern) 4.6
Sk complete orientation reversal 3.5
Se complete orientation reversal 4.1.3
sKTG signed long KTGs 4.6
TV Twisted Vertex relations 4.5.1
tder tangential derivations 3.2
trn cyclic words 3.2
tr
s
n cyclic words mod degree 1 3.2

TAutn the group exp(tdern) 3.2
u a map tdern → Pw(↑n) 3.2
ue strand unzips 4.1.3
uT u-tangles 3.3
V , V + the invariant of a (positive) vertex 4.3
V − the invariant of a negative vertex 4.3

II Vertex Invariance 4.2
vT v-tangles 3.1
W Z(w) 4.5.3
W 2 Wen squared 4.5.1
w the wen 4.5
wT w-tangles 3.1
wTF w-tangled foams with wens 4.5
wTF o orientable w-tangled foams 4.1
Z expansions throughout
ZA an A-expansion 2.3

4T 4T relations 4.6
↑ a “long” strand throughout
↑ the quandle operation 2.1
∗ the adjoint on Aw(↑n) 3.2
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