Both terms are words in lie, but notice that the first term does not involve the letter z.
This means that if the second term involves o3 at all, i.e., if py has tails on the second
strand, then both terms have to be zero individually. Looking at the first term, we view
pi? as a Lie word in z; and T3, which does involve z; by our assumption above. We have
[03%, 4] = [wg, p2?] = 0, which implies p3? is a multiple of w,, in other words, p is a single
arrow on the second strand. This is ruled out by the assumption that k£ > 2.

If the second term does not involve z3 at all, then p, has no tails on the second strand,
hence it is of degree 1, but, again k& > 2. We have proven that the “tree part” of p is zero.

Now assume that p is a linear combination of wheels. Wheels have only tails, so the first,
second and fourth terms of (37) are zero due to the tails commute relation. What remains
is [p%,a%] = 0. We assert that this is true if and only if each linear component of p has all
of its tails on one strand.

To prove this, recall each wheel of p™ represents a cyclic word in letters 2, and z53. The
map 7 : p' = [p!% 0] is & map tr, — trs, which sends each cyclic word in letters z; and 2

to the sum of all ways of substituting [xs, ;] for one of the @3’s in the word. Note that if

we write out the commutators, then all terms that have 29 between two 23’s cancel. Hence
all remaining terms will be cyclic words in x; and w3 with one occurrence of x5 in between
an x; and an ws. :

We construct an almost-inverse ' to r: for a cyclic word w in try with one occurrence of
T2, let 7" be the map that deletes Z5 from w and mapS‘i't to the resulting word in trs if 5
is followed by 23 in w, and maps it to 0 otherwise. On-the rest of trs the map ' may be
defined to be 0.

The composition 7'r takes a cyclic word in 2 and a3 to itself multiplied by the number
of times a letter w3 follows a letter a1 In it. The kernel of this map can consist only of cyclic
words that do not contain the sub-word w321; namely, these are the words of the form X or
a%. Such words are indeed in the kernel of 7, 50 these make up exactly the kernel of r. This
is what we wanted to prove: all wheels in the “wheel part” have all their tails on one strand.

This concludes the proof of the claim, and the proof of the theorem.

6. w-TANGLED FoAMS

NEW.

If you have come this far, you must have noticed the approximate Bolero spirit of this
article. In every chapter a new instrument comes to play; the overall theme remains the same,
but the composition is more and more intricate. In this chapter we add “foam vertices” to
our w-tangles (and a few lesser things as well) and ask the same questions we asked before;
primarily, “is there a homomorphic expansion?”. As we shall see, in the current context this
question isdore or less equivalen? (details to come) to the Alekseev-Torossian [AT| version
of the Kashiwara-Vergne [KV] problem.

6.1. The Circuit Algebra of w-Tangled Foams. For reasons we will reluctantly ac-
knowledge later in this section (see Comment 6.2), we will present the circuit‘ algebra of
w-tangled foams via its Reidemeister-style diagrammatic description (accompanied by a lo-
cal topological interpretation) rather than as an entirely topological construct.
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Definition 6.1. Let wIl'F" S ¢ :
(where r stands for “restricted”, to be explained in Section 6.5)

be the algebraic structure
w-relations as in| w-operations as )

WTF"=CA (S L -
< RN Section 6.1.2 | in Section 6.1.3

Hence wTF" is the circuit algebra generated by the generators listed above and described
below, 'modulo the relations described in Section 6.1.2, and augmented with several “auxiliary
operations”, which are a part of the algebraic structure of wI'F™ but are not a part of its
structure as a circuit algebra, as described in Section 6.1.3.

al meaning to each of the generators of
knotted ribbon tubes in R
al surfaces, and also to

' l\/l% W’\fll\ 'D

6.1.1. The generators of wIF". There is topologic
WI'FT: they each stand for a certain local feature of (framed)
As in Section 5.4, we require the tubes to be oriented as 2-dimension
have a distinguished core with a 1-dimensional orientation (direction).

: orwnttien )

The crossings are as explained in Section 2.2.2 and Section 5.4: the under- £ The for¥cF
strand denotes the ring flying through, or the “thin” tube. Remember that kil s 18

there really are four kinds of crossing, but in the circuit algebra:the two not \it Jpe,sn’f'
shown are generated by the two that are shown. The bulleted end denotes a cap on the tube, rsffe™

as in the figure on the right. \

The last two generators denote “foam vertic
vertex can be thought of as “half of a crossing”. To make this precise using the
flying rings interpretation, the first singular vertex represents the movie shown on
the left: the ring corresponding to the right strand approaches the ring represented
by the left strand from below, flies inside it, and then the two rings fuse (as opposed
to a crossing where the ring coming [rom the right would continue to fly out to ‘
above and to the left-of the other one). The second vertex is the movie where a A: f"""'{‘]
ring splitsjinto a smaller and a larger ring, and the small one flies out to the ‘beﬁ
and beloxﬁle big one. : 1 (94‘{"1’

The reader might object that there

os”. As the notation suggests, a

really are four types of vertices of each of
the “fuse” and “split” kinds (sizeq there arc four types of crossings), as shown in
Figure 23. However, looking at the fuse vertices, observe that the last two of these can be
obtained from the first two by composing with virtual crossings, which are circuit algebra

&9
artifacts. We later (see Remark 6.4 in Section 6.1.3) show that the second fuse vertex can
also be obtained from the first using wI'F" operations. In fact, we will see that this lets us
obtain all the “split” vertices from the first generating vertex as well so the second generating
vertex is not necessary, we only included it as a generator for convenience.

The sign of a vertex can be defined the same way as the sign of a crossing (see Section
5.4). We will sometimes refer to the first gencrator vertex as

“he positive vertex” and to
the second one as “the negative vertex”. The band notation for vertices is the same as for
crossings: the fully colored band stand

s for the thin (inner) ring.
In addition to the usual R2, R3, and OC moves of Figure 6,
be the behavior of the additional features. These are as

100000

6.1.2. The relations of WIF".
we need more relations to descri

follows:
A cap means capping the tube represented by a strand or shrinking a ﬂyingT ring to a
point. Hence, a cap on the through,strand can be “pulled out” from a crossing, but not a
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Figure 23. Vertex types in ufl}™.

cap on the thick (or over) strand (in any orientation of the strands), as shown below. We
decote this relation by CP, for Cap Pull-out,.

—_— - ,bllt

P s R
The Reidemeister 4 relations assert that a strand can be moved under or over a crossing, as
shown in the picture below. The ambiguously drawn vertices in the picture denotes a vertex
of any kind (as described in Section 6.1.1), and the strands can be oriented arbitrarily. The

local topological (flying ring) interpretations can be read from the pictures below. These
relations will be denoted RA.

| %H% %H%\
A% hr

Comment 6.2. We have presented the space wTF" as a circuit algebra generated by certain
pictures and factored out by some relations. We have given local topological meaning to
the pictures and explained how the topological intuition justifies the relations, but we only
conjecture that the generators and relations above provide a reidemeister theory for knotted
ribbon tubes in R*,

RY

Comment 6.3. As a result of the previous comment, framing has not played a role here,
except to explain the lack of a Reidemeister 1 relation. In the following section though,
we will need a notion of framing to define the unzip (tube doubling) operation. Framing is
a continuous up-to-homotopy choice of unit normal vector at every point of the tube. We
do not allow any such choice, however. Recall that the knotted tubes we consider have a
“filling”, \\Qﬁth only “ribbon” self-intersections. When we double a tube by pushing it off
itself slightly in the direction of the framing, we want this ribbon property to be preserved.
This is eqyivalent to saying that the ring obtained by pushing off any given girth of the tube
w, 64 Al




in the framing direction i : ,

Pl t(l)lg? (l‘l‘rectylon is nolg 111\1’ked with the tube. In the flying ring language, the framing
ol Mbelv % 10-a “companion ring” to each ring, which can fly parallel inside, outside above
yd/ ow it and change these positions, but is never linked with it:

6/

=

T o S

S = 7 S

Without loss of generality, we restrict ourselves to framing choices as
follows: fixing a ¢ coordinate cuts out a ring (S?) from each tube, choices
of unit normal vectors along this ring are continuous maps St — ST We
require that each of these maps be constant, in other words it is enough
to specify the [raming along the core of the tube. Hence the blackboard
framing of a line diagram gives rise to a well-defined framing of the tube. We
require framings to match at the vertices, with the normal vectors pointing
cither directly towards or away [rom the center of the singular ring; while the orientations
of the three tubes may or may not match. An example of a vertex with.the orientations and
framings shown is on the right. Note that the framings on the two sides of each band are
mirror images of each other, as they should be.

6.1.3. The aquziliary operations of wI'T". The structure WwIF" is, by definition, a circuit
algebra. In addition it is equipped with several extra operations.

The first one of these is the familiar orientation switch. We will, as mentioned in Section
5.4, distinguish between switching both the 2D amd 1D orientations, or just the strand (1D)

A 1’ 4 direction. -Owienbation—switch—denoted S., means the total switch (of both orientations) o
nhpo ¢ . ; : . um 4 .
the strand e, while we call the operation of only reversing the strand direction de”,

and denote it by A.. ’lo/_)'om‘['

Remark 6.4. Note that as promised in Section 6.1.1, the second “fuse” type vertex of Figure
23 and the negative generator vertex can be obtained from the positive generator vertex by
antipode and orientation switch operations, as shown below. This also implies that all the
other “split” type vertices of Figure 23 can be obtained from the positive generator vertex.
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Perhaps the most interesting of the auxiliary op-
erations is unzip, or tube doubling. This is done by
pushing the tube off itself slightly in the framing di-
rection. At each of the vertices at the two ends of the
doubled tube there are two tubes to be attached to
the doubled tube. At each end, the normal vectors
pointed either directly towards or away from the cen-
ter, so there is an “inside” and an “outside” ending
ring. The two tubes to be attached also come as an “inside” and an “outside” one, which
defines which one to attach to which. An example (in band notation) is shown on the right.
Unzip can only be done if the 1D and 2D orientations match at both ends, as shown in the
example.

We restrict unzip to strands whose two ending vertices are of different signs. This is

a somewhat artificial condition which we impose to get equations eqvivalent to the [AT]

equations, D€ will remeve, in i .D.
que 8. e, Section 6.5

A 1‘elat'ed::)peration, disk un-
zip, is unzip done on a capped U ﬂ v -iﬂj/__
strand, pushing the tube off in Vi
the direction of the framing, as ol
0

before. An example in the line and band notations (with the framing suppressed) is shown
on the right. '

Finally, we allow the deletion of “long linear” strands, meaning strands that do not end
in a vertex orQ-fap on either side. ’

The goal, as before, is to construct a homomorphic expansion for «TF". However, first we
need to understand its target space, the projectivization “proj wlf ™.

6.2. The projectivization. Mirroring the previous section, we describe the projectivization
as a circuit algebra on certain generators modulo a number of relations.
relations as in | operations as in >

A" =CA <H T, J'\» 'Y Section 6.2.1 Section 6.2.2

In other words, A" is the circuit algebra of arrow diagrams on trivalent (or foam) skeletons
with caps. Note that all but the first of the generators are skeleton features, the single arrow
is the only generator of degree 1. % N 71/

6.2.1. The relations of A*. In addition to the usual 1T and T'C' relations (see Section 2.3)
diagrams in A" satisfy the following additional relations:

Vertex invariance, denoted by VI, are relations arising the same way as ﬁ does, but with .
the participation of a vertex as opposed to a crossing: e

AW e = >1\

- banind
The other end of the arrow;3is in the same place throughout the relatio ol'Zewhei*e outside
the picture shown. The signs are positive whenever the strand on which the arrow ends
is directed towards the vertex, and negative when directed away. The ambiguously drawn
vertex means either of the two vertices, but the same one throughout. '
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N . "
ngrl’lesgcg oileléullc;l)l (a 'CELP _Can be pulled out from under a strand but not from
Derste this ¢ ! means that heads near a cap are zero, as shown on the right. =0
te this relation also by CP.  (Thotgh Nefe Tt « Wl ma A Cop 5 et 7 O}V)
.Ab in ”the previous sections, and in particular in Definition 3.13, we define a “w-Jacobi 0
diagram” (or just “arrow diagram”) on a foam skeleton by allowing trivalent chord vertices.

Dellot-e thg circuit algebra of formal linear combinations of arrow diagrams by A*t. We have
the following bracket-rise theorem:

Theorem 6.5. The obvious inclusion of diagrams induces a circuit algebra isomorphism
A 22 Avt. Furthermore, the A8 and THX relations of Figure 12 hold in At

Proof. Same as the proof of Theorem 3.15. a

As in Section 5.1, the primitive elements of A¥ are connected diagrams, namely trees and
wheels. Before moving on to the auxiliary operations of A", let us take note of two useful
observations:

Lemma 6.6. Av(Y) is generated by wheels.

Proof. Any arrow diagram with an arrow head at its top is zero by the Cap Pull-out (CP)
relation. If D is an arrow diagram that has a head somewhere on the skeleton but not at

the top, then one can use repeated STU relations to commute the head to the top at the
cost of diagrams with one fewer skeleton head.

Iterating this procedure, we can get rid of all arrow heads, and hence write D as a linear
combination of diagrams having no heads on the skeleton. All connected components of such é-/
diagrams are wheels.

Lemma 6.7. A*(Y) = A¥(T2), where Av(Y) stands for lhe space of arrow diagrams on
o verter with any orientation of the strands, and as before A¥(T2) is the space of arrow
diagrams on two strands.

Proof.  We can use the vertex invariance (V1) relation to push all arrow heads and tails
from the “trunk” of the vertex to the other two strands. O

6.2.2. The auziliary operalions of AY. Recall from Section 5.4 that the orientation switch
S, (i.e. changing both the 1D and 2D orientations of a strand) always changes the sign of
a crossing involving the strand e. Hence, letting [ denote any wlF", the induced arrow
diagrammatic operation is a map S, : A(F) = AY(S(F)) which acts by multiplying each
arrow diagram by (—1) raised to the number of arrow endings on ¢ (counting both heads
and tails).

The antipode operation A, (i.e. switching only the strand direction), on the other hand,
only changes the sign of a crossing when the strand being switched is the under- (or through)
strand. (See section 5.4 for pictures and explanation.) Therefore, diagrammatic -1, acts by
switching the direction of ¢ and multiplying cach arrow diagram by (—1) raised to the number
of arrow heads on e. Note that in A(ty) taking the antipode on every strand gives the adjoint
map of Definition 5.17.

The arrow diagram operations induced by unzip and disc unzip

(both to be denoted u,, and interpreted appropriately according Moo [:#—‘

to whether the strand e is capped) act in the same manner: they e

are maps u : A(f) = Av(u,(F)), where each arrow ending (head or tail) on e is mapped
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On the right side of the equation above ¢*Pec@+We—tD reminds us of Equation (42),
however we cannot use (42) directly as we live in a different space now. In particular,
@ there meant an arrow from strand 1 to strand 3, while here it means a one-wheel on
(capped) strand 1, and similarly for y. Fortunately, there is a map o : A%(13) = AY(1),
where o “closes the third strand and turns it into a chord (or internal) strand, and caps the
first, two strands”, as shown on the right. This map is well defined (in fact, it kills almost all
relations, and turns one m into an Iﬁ* ). Under this map, using our abusive notation,
o(x) =2 and o(y) = y.

Now we can apply Equation (42) and get heclioge’e?) — ge@)+e(®) | which, using that tails
commute, implies

b = c(x) + c(y) — c(loge™e¥) (44)

Now suppose we have found a group-like homomorphic expansion, that is, solutions V =
e and C' = e° to equations (38) (39) and (40). Then F := eP satisfies the Alekseev-
Torossian equations (41): e acts on lica by conjugation by ¢*P | 5o the first part of (41) is
satisfied by (42), and the second half is implied by (43) and (44).

On the other hand, suppose that we have found ' € TAut, and o € tr; satisfying (41).
Then take D :=log F, b := =) and ¢ € 6-'(b). Then V = ebe*? and C = e° satisfy the
equations for homomorphic expansions (38), (39) and (40).

6.5. The wen. A topological feature of w-tangled foams which we excluded from the theory
above is the wen. The wen was introduced in 254 as a Klein bottle cut apart; it amounts
to changing the 2D orientation of a tube, as shown in the picture below:

B § I

Pechers The
creesrf -\(7154"3
R WwTE, ;{_‘4‘
In this section we study the circuit algebra of w-Tangled Foams with the wen rightfully/t7e7 Hhe
included as a generator, and denote this space by wI'F. or1entsf ens of

e Gnnvtsrs)
o

6.5.1. The wen relations. Adding the wen as a generator means we also have to additional
relations involving the wen, as follows:

The interaction of a wen and a crossing has already been mentioned in Section 2.5.4, and
is described by Equation (16), which we repeat here for convenience:

B

Recall that in flying ring language, a wen is a ring flipping over. It does not matter whether

ring B flips first and then flies through ring A or vice versa. However, the movies in which

ring A first flips and then ring B flies through it, or B flies through A first and then A flips
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