Undergraduate Committee Meeting Agenda, 171020

- Confessions of a noob.
- Go over the departmental council meeting materials.
- A third admin position.
- Our service courses are huge. We need a fourth admin position!
- A Quantitative Biology program.
- Limited enrolment in Stats.
- PEYs / Internships.
- Some strange pre-requisites:
o MAT 351 PDE requires only MAT267 ODE, which has a co-requisite of MAT257 Analysis II. Shouldn't MAT351 also require MAT257?
o MAT347 Groups Rings Fields requires MAT257 Analysis II. Why?
0 Is it rational that MAT157 excludes MAT246?
0 A pre-requisites issue in our Econ and Finance specialist program - STA457 is required in year 4. It has a prerequisite STA302, but in year 3 we only require "STA302/ECO375".
Should we form a 2-3-person subcommittee to look into these and make some recommendations? Dietrich? Vitali? A student?
- U of T's Teaching Excellence and Student Learning Awards. Set up a 2-3-person subcommittee? Henry? Askold? A student?
- Split off academic integrity from my duties? Pre-requisites and waivers?
Riddle. 2^{n} yellow unit balls are centered at the vertices of the n-dimensional cube $\{-1,1\}^{n}$. Let B_{n} be the largest blue ball centered at 0 bound by the yellow balls, and let C_{n} be the smallest red cube bounding the yellow balls. Compute $\lim _{n \rightarrow \infty} \frac{\operatorname{Vol}\left(B_{n}\right)}{\operatorname{Vol}\left(C_{n}\right)}$.
Graphics3D[{
Graphics3D[{
Red, Opacity[0.2], Cuboid[\{-2, -2, -2\}, $\{2,2,2\}]$,
Yellow, Opacity[0.5], Table[Sphere[c, 1], \{c, Tuples[\{1, -1\}, 3]\}],
Blue, Opacity[1], Sphere[\{0, 0, 0\}, Sqrt[3]-1]
\}, Boxed \rightarrow False]

