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It’s a bit tough to write a research proposal for re-
search that will take place more than a year from now. In
the optimistic scenario, we will finish everything that’s
on our desks right now, and be ready to sail on into
the horizon. In the pessimistic scenario, we will still be
struggling with the details of a paper we started 10 years
ago. In the most realistic scenario, we will be pushing
our understanding of emergent knots (and other knotted
objects: links, braids, tangles, etc.) in a pole dancing
studio.

What’s a pole dancing studio? It’s a
big room (namely, a disk cross an inter-
val) with a few stationary poles (namely,
straight vertical lines going from floor to
ceiling) removed. A picture is on the right, and in dryer
language, it is simply a punctured disk cross an interval.
Let’s call the pole dancing studio with n poles PDSn.

What’s an emergent knot? It’s an object living in a
quotient of knot theory in which almost all knottedness
is killed, and only a tiny bit remains. Precisely, for the
strands of the knotted object itself (not for the poles), we
mod out by the relation   = 0, where  B ! − "
(namely, a knotted object with two double points is set to
0, where a double point is a mnemonic for the difference
between an over crossing and an under crossing). Had
we been moding out by the stronger relation  = 0, we
would be declaring that an over crossing is equal to an
under crossing, and that kills all knottedness. We are not
that cruel, and we let a whiff of knottedness survive. Let
us call the space of emergent knots K1.

Collapsed knots, namely knots modulo  = 0, are
simply homotopy classes of curves in PDSn. If we
project them to the floor of the studio we lose nothing
and we see curves in a punctured disk, namely, elements
of the free group FGn (at this level of detail we are ignor-
ing base points). The free group has a commutative alge-
bra analog, the free associative algebra FAn, and there is
the so-called Magnus expansion Z0 : FGn → FAn which
plays a significant role in combinatorial group theory.

It turns out that the procedure that takes FG to FA
(“associated graded”) can be imitated in the case of emer-
gent knots, and then it takes K1 to A1, “emergent chord
diagrams”, which we will not define here, except to say
that it is a whiffmore than the free associative algebra FA.
And it makes sense to ask the question, is there an expan-
sion Z1 : K1 → A1? Is there such an expansion which is
homomorphic, meaning, which preserves several addi-
tional structures that K1 andA1 inherit from knots?

The answer is YES. Furthermore, it turns out that Z1
allows us to construct an expansion for the Goldman-
Turaev Lie bialgebra, a certain algebraic structure con-
structed from curves in the punctured disk. In itself,
this was shown by Alekseev, Kawazumi, Kuno, and Naef
to be equivalent to a solution of the Kashiwara-Vergne
problem which in itself implies an equivalence state-
ment between convolutions of invariant functions on Lie
groups and on Lie algebras. We don’t know a direct rela-
tion between emergent knots and this convolutions state-
ment. We will certainly try to find this relationship dur-
ing my proposed visit to SMRI!

By an earlier work of Dancso and myself, that same
Kashiwara-Vergne problem is also related to “w-knots”,
a class of 2-dimensional knotted objects living in 4-
dimensional space. Thus emergent knots ought to be
related to w-knots, but we don’t know a direct relation.
Please add that to our SMRI to do list.

It is well known that expansions for (“full”, not
merely emergent) knots are closely related to Drinfel’d
associators and to the Grothendieck-Teichmüller group
GT . There are analogs of these notions for emergent
knots, and seeing that in emergent knots almost all com-
plexity is killed off, emergent associators are simpler to
compute than full associators and the study of GT also
becomes simpler. Yet recent computations by Kuno and
myself show that up to degree 10 or so, the simpler emer-
gent theory is equal to the harder full theory. We don’t
know why this is so. Perhaps we will figure it out in
2025!

Thus I hope that SMRI will extend its hospitality to me and to my research with Dr. Zsuzsanna Dancso, and will
fund my visit to Sydney between May 24 2025 and July 6 2025. During that time I will be delighted to speak about
this subject in Sydney. I expect that I will spend most of that period in Sydney, though it is possible that I will visit
Melbourne and/or Brisbane for 2-3 days each.

A handout from a talk I gave on the subject in Switzerland in 2022 is on the following two pages. It has many
more details, and a few relevant references. A video of that talk is linked at http://drorbn.net/ld22.
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Other Passions. With Roland van der Veen, I use “so-
lvable approximation” and “Perturbed Gaussian Differe-
ntial Operators” to unveil simple, strong, fast to compu-
te, and topologically meaningful knot invariants near the
Alexander polynomial. (⊂ polymath!)

?

Theorem ([BG], conjectured [MM],
elucidated [Ro1]). Let Jd(K) be
the coloured Jones polynomial of K, in the d-dimensional
representation of sl2. Writing

(q1/2 − q−1/2)Jd(K)
qd/2 − q−d/2

∣∣∣∣∣∣
q=e~

=
∑

j,m≥0

a jm(K)d j~m,

“below diagonal” coefficients vanish, a jm(K) =

0 if j > m, and “on diagonal” coefficients
give the inverse of the Alexander polynomial:(∑∞

m=0 amm(K)~m
)
· ω(K)(e~) = 1.

“Above diagonal” we have Rozansky’s Theorem [Ro3, (1.2)]:

Jd(K)(q) =
qd − q−d

(q − q−1)ω(K)(qd)

1 +

∞∑

k=1

(q − 1)kρk(K)(qd)
ω2k(K)(qd)

 .

Melvin,
Morton,
Garoufalidis

Abstract. I’ll explain what “everything around” means: classical
and quantum m, ∆, S , tr, R, C, and θ, as well as P, Φ, J, D,
and more, and all of their compositions. What DoPeGDO means:
the category of Docile Perturbed Gaussian Differential Operators.
And what slε2+

means: a solvable approximation of the semi-
simple Lie algebra sl2.

Knot theorists should rejoice because all this leads to very po-
werful and well-behaved poly-time-computable knot invariants.
Quantum algebraists should rejoice because it’s a realistic play-
ground for testing complicated equations and theories.

Cartan’s θ,
the

Dequantizator,
and more. . .

Conventions. 1. For a set A, let zA B {zi}i∈A and let
ζA B {z∗i = ζi}i∈A.†1 2. Everything converges!

DoPeGDO B The category with objects finite
sets†2 and mor(A→ B):{F = ω exp(Q + P)

} ⊂ Q~ζA, zB�
Where: • ω is a scalar.†3 • Q is a “small” qua-
dratic in ζA ∪ zB.†4 • P is a “docile perturba-
tion”: P =

∑
k≥1 ε

kP(k), where deg P(k) ≤ 2k+2.†5

• Compositions:†6

F�G = G◦F B
(
G|ζi→∂zi

F
)

zi=0
=

(
F |zi→∂ζiG

)
ζi=0

.

Cool! (V∗)⊗Σ ⊗ V⊗S explodes; the ranks of qua-
dratics and bounded-degree polynomials grow
slowly!†7

Representation theory is over-rated!

DoPeGDO Footnotes. †1. Each variable has a “weight”∈ {0, 1, 2}, and
always wt zi + wt ζi = 2.

†2. Really, “weight-graded finite sets” A = A0 t A1 t A2.
†3. Really, a power series in the weight-0 variables†9.
†4. The weight of Q must be 2, so it decomposes as Q = Q20 + Q11. The

coefficients of Q20 are rational numbers while the coefficients of Q11
may be weight-0 power series†9.

†5. Setting wt ε = −2, the weight of P is ≤ 2 (so the powers of the
weight-0 variables are not constrained†9).

†6. There’s also an obvious product
mor(A1 → B1) ×mor(A2 → B2)→ mor(A1 t A2 → B1 t B2).

†7. That is, if the weight-0 variables are ignored. Otherwise more care
is needed yet the conclusion remains.

†8. Hom(U⊗Σ → U⊗S ) { mor({ηi, βi, τi, αi, ξi}i∈Σ → {yi, bi, ti, ai, xi}i∈S ),
where wt(ηi, ξi, yi, xi) = 1 and wt(βi, τi, αi; bi, ti, ai) =

(2, 2, 0; 0, 0, 2).
†9. For tangle invariants the weight-0 power series are always rational

functions in the exponentials of the weight-0 variables (for knots:
just one variable).

Our Algebras. Let slε2+
B L〈y, b, a, x〉 subject to [a, x] = x,

[b, y] = −εy, [a, b] = 0, [a, y] = −y, [b, x] = εx, and [x, y] =

εa + b. So t B εa − b is central and if ∃ε−1, slε2+
/〈t〉 � sl2.

U is either CU = Û(slε2+
) or QU = U~(slε2+

) = A〈y, b, a, x〉 with
[a, x] = x, [b, y] = −εy, [a, b] = 0, [a, y] = −y, [b, x] = εx, and
xy − qyx = (1 − AB)/~, where q = e

~ε , A = e
−~εa, and B = e

−~b.
Set also T = A−1B = e

~t.
The Quantum Leap. Also decree that in QU,

∆(y, b, a, x) = (y1 + B1y2, b1 + b2, a1 + a2, x1 + A1x2),
S (y, b, a, x) = (−B−1y,−b,−a,−A−1x),

and R =
∑
~ j+kykb j ⊗ a jxk/ j![k]q!.

Compositions (1).

Where • ω = ω1ω2 det(I − F2G1)−1.
• E = E1(I − F2G1)−1E2.
• F = F1 + E1F2(I −G1F2)−1ET

1 .
• G = G2 + ET

2 G1(I − F2G1)−1E2.
• P is computed using “connected Feyn-
man diagrams” or as the solution of a messy
PDE (yet we’re still in algebra!).

Mid-Talk Debts. •What is this good for in quantum algebra?
• In knot theory?
• How does the “inclusion” D : Hom(U⊗Σ → U⊗S ) {

DoPeGDO work?
• Proofs that everything around slε2+

really is DoPeGDO.
• Relations with prior art.
• The rest of the “compositions” story.

Less Abstract

D

Thanks for inviting me to Da Nang!
ωεβBhttp://drorbn.net/v19/

More at ωεβ/talks

Dror Bar-Natan: Talks: DaNang-1905:

Everything around slε2+
is DoPeGDO. So what?
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Continues Rozansky [Ro1,
Ro2, Ro3] and Overbay [Ov],
joint with van der Veen [BV].

m : U ⊗ U→U

tr : U→U/wx=xw

Φ∈CU⊗3

∆ : U→U ⊗ U

R∈QU ⊗ QU

J∈CU ⊗CU

S : U→U

C∈QU

ca mũ

†8

4D Metrized Lie Algebras

In mor(A→B), Q=
∑

i∈A, j∈B
Ei jζiz j+

1
2

∑
i, j∈A

Fi jζiζ j+
1
2

∑
i, j∈B

Gi jziz j

composition � One abstraction level
up from tangles!

{tangles} →
{ }

with compositions:

A B

E1

F1 G1

P1

ω1 B C

E2

F2 G2

P2

ω2 A C

E

F G

P

ω

greek latin

Q1 Q2 Q

us

algebras isomorphic
to sl2 + 1D

the Abelian
algebra

solvable
algebras

Vassiliev

slε2+

Lin WangJones Tian

Gompf−Scharlemann−

Thompson

Piccirillo

Wirtinger

Blanchfield

van der OverbayRozansky
Veen

p = 1 − T s
diamondtraffic.com
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Cars, Interchanges, Traffic Counters, and a Pretty Darned Good Knot Invariant
Dror Bar-Natan: Talks: Geneva-2206:

i+1 j+1j+1 i+1

1−T T 1 0 0 T−11 1−T−1

ωεβ/J

(n = 3)
T

δ
U

We seek strong, fast, homomorphic knot and tangle invariants.
Strong. Having a small “kernel”.
Fast. Computable even for large knots (best: poly time).

d1

Why care for “Homomorphic”? Theorem. A knot K is ribbon
iff there exists a 2n-component tangle T with skeleton as below
such that τ(T ) = K and where δ(T ) = U is the untangle:

Homomorphic. Extends to tan-
gles and behaves under tangle
operations; especially gluings
and doublings:

K

τ

Hear more at ωεβ/AKT.

ωεβBhttp://drorbn.net/j22/Thanks for inviting me to Geneva!

Abstract. Reporting on joint work with
Roland van der Veen, I’ll tell you some
stories about ρ1, an easy to define, strong,
fast to compute, homomorphic, and well-
connected knot invariant. ρ1 was first studied by Rozansky and
Overbay [Ro1, Ro2, Ro3, Ov], it has far-reaching generalizations,
it is dominated by the coloured Jones polynomial, and I wish I un-
derstood it. Common misconception. “Dominated”; “lesser”.

Jones:
Formulas stay;
interpretations change with time.

Formulas. Draw an n-crossing knot K as on the ri-
ght: all crossings face up, and the edges are marked
with a running index k ∈ {1, . . . , 2n + 1} and with
rotation numbers ϕk. Let A be the (2n+1)× (2n+1)
matrix constructed by starting with the identity ma-
trix I, and adding a 2 × 2 block for each crossing:

ij

s = −1

Let G = (gαβ) = A−1. For the trefoil example, it is:

A =



1 −T 0 0 T − 1 0 0
0 1 −1 0 0 0 0
0 0 1 −T 0 0 T − 1
0 0 0 1 −1 0 0
0 0 T − 1 0 1 −T 0
0 0 0 0 0 1 −1
0 0 0 0 0 0 1



,

G =



1 T 1 T 1 T 1
0 1 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1−T

T 2−T+1
1

T 2−T+1
1

T 2−T+1
T

T 2−T+1 1
0 0 1−T

T 2−T+1 − (T−1)T
T 2−T+1

1
T 2−T+1

T
T 2−T+1 1

0 0 0 0 0 1 1
0 0 0 0 0 0 1



.

Note. The Alexander polynomial ∆ is given by

∆ = T (−ϕ−w)/2 det(A), with ϕ =
∑

k

ϕk, w=
∑

c

s.

Classical Topologists: This is boring. Yawn.

A col i+1 col j+1
row i −T s T s − 1
row j 0 −1

c :

i j

s = +1

4

ϕ
4

=
−1

∗ In algebra x ∼ 0 if for every y in the ideal generated by x, 1 − y is invertible.

Formulas, continued. Finally, set

R1(c) B s
(
g ji

(
g j+1, j + g j, j+1 − gi j

)
− gii

(
g j, j+1 − 1

)
− 1/2

)

ρ1 B ∆2


∑

c

R1(c) −
∑

k

ϕk (gkk − 1/2)

 .

In our example ρ1 = −T 2 + 2T − 2 + 2T−1 − T−2.
Theorem. ρ1 is a knot invariant. Proof: later.
Classical Topologists: Whiskey Tango Foxtrot?

Cars, Interchanges, and Traffic
Counters. Cars always drive forw-
ard. When a car crosses over a bridge
it goes through with (algebraic) pro-
bability T s ∼ 1, but falls off with probability 1 − T s ∼ 0∗. See
also [Jo, LTW].

Accompanies ωεβ/APAI

“The Green Function”

Jessica, Nancy, Tamara, Zsuzsi, & Dror in PDS4

van der Veen

Le, Murakami

Dancso Hogan Liu Scherich

Tangles in a Pole Dance Studio: A Reading of Massuyeau, Alekseev, and Naef
Dror Bar-Natan: Talks: LesDiablerets-2208:

Example 2. With γ1, γ2 ∈ π (or π̄) and with
λ0, λ1 as on the right, we get the “double bra-
cket” η2 : π ⊗ π→ π ⊗ π (or π̄ ⊗ π̄→ π̄ ⊗ π̄).
Example 3. With γ ∈ π̄ and
λ0(γ) its ascending realization
as a bottom tangle and λ1(γ) its
descending realization as a bottom tangle, we get
η3 : π̄→ π̄⊗ |π̄|. Closing the first component and
anti-symmetrizing, this is the Turaev cobracket. descendingascending

ascending descending

Example 4 [Ma]. With γ ∈ π̄ and λ0(γ) its
ascending outer double and λ1(γ) its ascen-
ding inner double we get η4 : π̄ → π̄ ⊗ π̄. A-
fter some massaging, it too becomes the Tu-
raev cobracket.

Nancy

Thanks for inviting me to Les Diablerets! ωεβBhttp://drorbn.net/ld22/

ωεβ/g22

Preliminary Definitions. Fix p ∈ N and F = Q/C.
Let Dp B D2\(p pts), and let the Pole Dance Studio
be PDSp B Dp × I. PDS3

Abstract. I will report on joint work
with Zsuzsanna Dancso, Tamara
Hogan, Jessica Liu, and Nancy Sche-
rich. Little of what we do is original,
and much of it is simply a reading of Massuyeau [Ma] and Alek-
seev and Naef [AN1].
We study the pole-strand and
strand-strand double filtration on
the space of tangles in a pole
dance studio (a punctured disk
cross an interval), the correspon-
ding homomorphic expansions,
and a strand-only HOMFLY-PT
relation. When the strands are transparent or nearly transparent
to each other we recover and perhaps simplify substantial parts
of the work of the aforementioned authors on expansions for the
Goldman-Turaev Lie bi-algebra. =⇒ Expansions W : FG⟨Xi⟩ → FA⟨xi⟩:

Magnus: Xi 7→ 1 + xi, X−1
i 7→ 1 − xi + x2

i − . . .
Exponential: X±1

i 7→ e
±xi

ωεβ/v19

Definitions. Let π B FG⟨X1, . . . , Xp⟩ be the free group (of defor-
mation classes of based curves in Dp), π̄ be the framed free group
(deformation classes of based immersed curves), |π| and |π̄| deno-
te F-linear combinations of cyclic words (|xiw| = |wxi|, unbased
curves), A B FA⟨x1, . . . , xp⟩ be the free associative algebra, and
let |A| B A/(xiw = wxi) denote cyclic algebra words.

Theorem 1 (Goldman, Turaev, Massuyeau, Alekseev, Kawazu-
mi, Kuno, Naef). |π̄| and |A| are Lie bialgebras, and there is a
“homomorphic expansion” W : |π̄| → |A|: a morphism of Lie bial-
gebras with W(|Xi|) = 1 + |xi| + . . ..
Further Definitions. • K = K0 = K0

0 = K(S ) B
F⟨framed tangles in PDSp⟩.

• K s
t B(the image via  → ! −" of tangles in PDSp

that have t double points, of which s are strand-strand).
E.g.,

• K /s B K/K s. Most important, K /1(⃝) = |π̄|, and there is
P : K(⃝)→ |π̄|.

• A B∏Kt/Kt+1, As B
∏K s

t /K s
t+1 ⊂ A, A/s B A/As.

K2
5 (⃝) = /.  → ! −"

Key 1. W : |π̄| → |A| is Z/1H : K /1H (⃝)→ A/1H (⃝).
Key 2 (Schematic). Suppose λ0, λ1 : |π̄| → K(⃝) are two ways
of lifting plane curves into knots in PDSp (namely, P ◦ λi = I).
Then for γ ∈ |π̄|, Lemma 1. “Division by ℏ” is well-defined.

η(γ) B (λ0(γ) − λ1(γ))/ℏ ∈ K /1H (⃝⃝) = |π̄| ⊗ |π̄|
and we get an operation η on plane curves. If Kontsevich likes λ0
and λ1 (namely if there are λa

i with Z/2(λi(γ)) = λa
i (W(γ))), then

η will have a compatible algebraic companion ηa:
ηa(α) B (λa

0(α) − λa
1(α))/ℏ ∈ A/1H (⃝⃝) = |A| ⊗ |A|.

For indeed, in A/2H we have ℏW(η(γ)) = ℏZ(η(γ)) = Z(λ0(γ)) −
Z(λ1(γ)) = λa

0(W(γ)) − λa
1(W(γ)) = ℏηa(W(γ)).

Fact 1. The Kontsevich Integral is an “expansion” Z : K → A,
compatible with several noteworthy structures.
Fact 2 (Le-Murakami, [LM1]). Z satisfies the strand-strand
HOMFLY-PT relations: It descends to ZH : KH → AH , where

KH B K
/(
! −" = (eℏ/2 − e−ℏ/2) ·a

)

AH B A /( = ℏ or = ℏ )
and deg ℏ = (1, 1).
Proof of Fact 2. Z(!) − Z(") = P ·

(
e
\/2 − e−\/2

)

= P ·
(
e
ℏP/2 − e−ℏP/2

)
=

(
e
ℏ/2 − e−ℏ/2

)
a. □ The rest is essentially Exercises: 1. Lemma 1? 2. A?

3. Fact 2? 4. A/1? Especially, A/1(⃝) � |A|! 5. Explain
why Kontsevich likes our λ’s. 6. Figure out ηa

i , i = 1, . . . , 4.

Example 1. With γ1, γ2 ∈
|π| (or |π̄|) set λ0(γ1, γ2) =
γ̃1 · γ̃2 and λ1(γ1, γ2) = γ̃2 ·
γ̃1 where γ̃i are arbitrary lifts of γi. Then η1 is the Gol-
dman bracket! Note that here λ0 and λ1 are not well-
defined, yet η1 is.
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Kashiwara Vergne
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1. Is there more than Examples 1–4?
2. Derive the bialgebra axioms from this perspective.
3. What more do we get if we don’t mod out by HOMFLY-PT?
4. What more do we get if we allow more than one strand-strand

interaction?
5. In this language, recover Kashiwara-

Vergne [AKKN1, AKKN2].
6. How is all this related to w-knots?
7. Do the same with associators. Use that to derive formulas for

solutions of Kashiwara-Vergne.
8. What’s the relationship with the Habiro-Massuyeau invariants

of links in handlebodies [HM] (different filtration!).
9. Pole dance on other surfaces!

10. Explore the action of the mapping class group.

Homework
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Kontsevich in a Pole Dance Studio. (w/o poles? See [Ko, BN])
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Comments on the Kontsevich Integral.
1. In the tangle case, the endpoints are fixed at top and bottom.
2. The (· · · )∼ means “a correction is needed near the caps and the

cups” (for the framed version, see [LM2, Da]).
3. There are never pp chords, and no 4Tpps and 4Tppp relations.
4. Z is an “expansion”.
5. Z respects the ss filtration and so descends to Z/s : K /s → A/s.

graded by the number of chords
filtered by the number of ss chords

= 0

+ = 04Tsss:

4Tpss:

Unignoring the Complications. We need λ0 and λ1 such that:
1. λ1(γ) is obtained from λ0(γ) by flipping all self-intersections

from ascending to descending.
2. Up to conjugation, λ1(γ) is obtained from λ0(γ) by a global

flip.
3. Z(λi(γ)) is computable from W(γ) and Z/1(λi(γ)) = W(γ).

Knitting needles

Yarn

View from above:

Comments onA. InA/1 legs on poles commute,
soA/1(⃝) = |A|!
InA/2H we have:

= x y

|xxyxyyx|

Example 1a. ηa
1(|xyxy|, |xyx|) =

Example 3a. Ignoring complications, ηa
3(xxyxyx) =

Proof of Lemma 1. We partially prove Theorem 2 instead:
Theorem 2. gr•KH � F⟦ℏ⟧ ⊗ (K /1)0.
Proof mod ℏ2. The map ← is obvious. To go →, map KH →
F⟦ℏ⟧ ⊗K /1 using ! 7→ P + ℏ2a and " 7→ P − ℏ2a and apply the
functor gr•.
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