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Let A be a unital algebra over 4 field F with char F = (), and
let T C K be an “augmentatiof ideal”; meaning K/T = F.
Definition. Say that K is quadlratic if its associated graded
or [ = EB;T;:” 7/ s a qugldpatic algebra. Alternatively,
et A= Q(K) = (V = I/1%)/Mer(jiy: V& V — I2/I%)) be
the “quadratic approximation™ to K (@ is a lovely functor).
Then K is quadratic iff the obvions g :

A — gr K is an
isomorphism. If G is a group, we say it is quadratic if its
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Foots & refs on PDF version, page 3,

Why Care?
® In abstract generality, gr K is a simplified version of K and
if it is quadratic it is as simple as it may be without being
killy. e In some concrete (somewhat generalized) knot theod
retic cases, A is a space of “universal Lie algebraic formulas™
and the “primary approach” for proving (strong) quadratic
ity, constructing an appropriate homomorphism Z : K — A
becomes wonderful mathematies:

oroup ring is, with its augmentation IM‘J u-Knots — and i .
c K| Braids v-RKnots w-Knots
['he Overall Strategy. Consider the CSitg 1 of Metrized  Lie Finite dimensional Lie
(K. 1) (here =" means @p and g is (alway¥) multiplication): | A| algebras [BN1]|Lie bialgebras [Hav| |algebras [BN3)|
Etingof-Kazhdan Kashiwara-Vergne-
e el Heropp e el K Associators quantization Alekseev-Torossian
_ Z| [Dri, BND]  |[EK, BN2] [KV. AT]

We care as im(p?” = py oo py) = IP, so IP/IPH =

im 7/ im Pt Henee we ask:

o What's I'P/u(1#T1)?

Proposition 2. If (K. T) is 2-local and 2-injective, it i

e How injective is this tower?

juadratic.

Proof. Staring  at  the  l-reduced  sequence
Jip#l Hp+1 Ir My - X Ir

ker pig 41 ker g, K, get Tt =

17/ ker gy P

IF - . I N
AT ke iprs) W oy But t..1.1\1.111‘\_, il
(I/I%)%P, so the above is (I/I%)®P /3 (F7V: Ry - IP—i71) |
But that’s the degree p piece of Q(K).
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T'he sequence

I’I:}I)usmun 1.
1

B = @) (1971 Ry 17777) I

s exact, wha:r(‘. (K, 1) is “2-local”.

I'he Free Case. If J is an angmentation ideal in K = F =
(x;), denote F' — FfJ =T by a — [z] and define ¢) : F — F]
w ;v x; + (1], Then Jy := o(J) is {w € F : degw > 0}.
For Jy it is easy to check that Ry = R, = 0, and hence the
Lamce is true for every J.

[he General Case. If K = F/M and I ¢ K, then I = J/M|
where J C I, Then I'V = J"/z.ﬁj_l s M JP and we

a He =1

The X Lemma (inspired by [Hut]).

A'] \\f\() 3“ C'[I
Ty /

AN
A, el

If the above diagram is Conway (=) exact, then its twe

liagonals have the same “2-injectivity defect”™. That is,

if Ay -— B — Cy and 4, — B — () are exact, thenl

ker( 3y o )/ ker g =~ ker(Fy o aq )/ ker ag.

ker (3 cag)
ker g

Michael Hutchings
pou) soj ABajowsoy sindus [jia

Proof. — ker G Mim oy
0

have -
_/M g Jir= 1

nutoJ‘"’p CQIM SR Te-t fonto
P =J? /ST M: T el = gl g M

AR =, (i e ) = 7 (S (7202 ) =
b, (5" J s pp (M) = J) =51 Ry I,

J:;J

/"';o:sz(. = ker Gy M im a; 4:—1 %

The Hutchings Criterion [Hut]. R, e
The singularity tower of (K, T) is “‘{k /uf‘/’
2-injective iff on the right, ker(mo v
J) = ker(d). That is, iff every Hott 7 \\’\L
“diagrammatic syzygy” lifts to a prtl Ve

“topological syzygy”.

Conclusion.  We need to know that (K.I) i
“syzygy complete” that every diagrammatic syzygyl

<) 3.

D-Injectivity. A (one-sided infinite) sequence

s Ky s Ky=K

o Ky s e —

is “injective” if for all p > 0, kerd, = 0. It is “2-injective” if
its “1-reduction”
Ko K, % Ky,

T T i wi T e

O
is injective: i.e. if for all p> ker(d, 0 8,41) = kerdp . A pair

Sp1

lifts to a topological syzygy. that ker(m o d) = ker(d).

(K, 1) is “2-injective” if its singularity tower is 2-injective,
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[oxample.

'00s back £ . Th( set of all
(goes back to [Kohl) j,.t for fun. 30 D“”mmm)

RARCES IRGE

K/Ki —K/Ka— K/K3g— K/Kg—

Crop § : R
Rotate I i| {ﬁ l(ﬁ
Adjoin [ A=

An expansion Z is a choice of a
“progressive scan” algorithm,

I& /I"' ! (invariants of type p) =:V,

/1) =Yy € = (5 = = (| FH)

ker fip = ([t¥, t"] = 0 = [t #"% 4 t/¥]) = (4T relations)

crop
rotate
adjoin

K/K: @K /2@ K2 /Kad K3 /Ky Ky /Ks@® K5/ KeD * -+

Il Il
R3 ker(K/Ks—K/K3)

grams mod 4T

i 4— éo F or R L
Z: universal finite type invariant, the Kontsevich integral. X D\,

Pul3,, 1s the group

A— (horizmm\l chord (lin-) _ —‘ T

5 0ij0ikOik = OikOikTij
<”i}' -1 §I7’—‘] »<“‘") ijIikO jk JkOikTij
i TijOkl = OklOij

L. Kauffman
. . e 1. . 3 o R [Kau, KL]
of “pure virtual braids” (“braids when you look™,
“blunder braids™):

|

T'he Main Theorem [Lee]. PuB,, is quadratic.
\n = (J(IJlI;I;)- :

PV Vvg
% Gonssarov-Polyak-Viro
with 2 =0ij = 0ij — 1=X-=-X,
the “semi-virtual crossing”.

r“ V=@ /J
viI - < X

/a-\/

= —H =<

0‘,//“\/@ &OC/ (‘-7’_:
kdaw —

A Lox For I:€ Jike 15 AV/J ont (ﬂﬁo///
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